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1. Among the numbers21, 22, · · · , 210, there are3 whose first digit is1 (namely,24 = 16, 27 =
128, and210 = 1024). It turns out that among the numbers21, 22, · · · , 2100, there are30 whose
first digit is1; and among the numbers21, 22, · · · , 21000, there are301 whose first digit is1. For
any positive integerN , defineaN by the rule that among the numbers2n with 1 ≤ n ≤ 10N ,
there areaN whose first digit is1. Prove thataN+1 is always obtained fromaN by adding a
single digit at the end.

Solution. A positive integer has first digit1 exactly when it lies in the interval[10s, 2×10s) for
somes ≥ 0. For anys ≥ 0, there is exactly one positive integerk such that10s ≤ 2k < 2×10s:
the reason is that on taking logarithms base2, these inequalities becomelog2(10s) ≤ k <

log2(10s) + 1, which means thatk = ⌈log2(10s)⌉. Also note that forN ≥ 1,

10⌊10
N log10 2⌋ ≤ 210N

< 10⌊10
N log10 2⌋+1.

Consequently, among the numbers2n with 1 ≤ n ≤ 10N , there is exactly one in the interval
[10s, 2 × 10s) for everys ∈ {1, 2, · · · , 10N log10 2}. This proves thataN = ⌊10N log10 2⌋,
which is just the number formed by the firstN digits after the decimal point inlog10 2 =
0.30102999566 · · · . The result is now obvious.

2. The sisters Alice, Bess, and Cath are fighting over a triangular pizza, which may be imagined
as a trianglePQR. Their father David proposes the following procedure for sharing it between
the four of them. Alice will select a pointA on the edgePQ, then Bess will select a pointB
on the edgePR, then Cath will select a pointC on the edgeQR. David will then cut the pizza
along the linesAB, BC, andAC, and take the centre pieceABC for himself, leaving three
corner pieces (some possibly empty, if endpoints of edges have been chosen). The sisters will
then either all take the corner piece to the left of the point they selected, or all take the corner
piece to the right of their point; Alice (as the eldest) will get to choose left or right. As everyone
knows, each sister will make her choices purely to maximize the area of her own share, except
that Alice and Bess, if their own shares are unaffected, willact to the advantage of the youngest
sister Cath. If they all reason perfectly, what will they do?

Solution. Write |XY Z| for the area of triangleXY Z, and normalize|PQR| to be 1.
Consider Cath’s decision in selecting the pointC. At this stageA andB have already been
chosen. Letα = |AQ|

|PQ| , β = |BR|
|PR| (already determined), andγ = |QC|

|QR| (to be chosen by Cath);
then0 ≤ α, β, γ ≤ 1, and

|ABP | = (1 − α)(1 − β), |ACQ| = αγ, |BCR| = β(1 − γ).

Cath knows that if she selectsγ such thatαγ < (1 − α)(1 − β), then Alice will chooseABP ,
leaving Cath withACQ, of areaαγ. Cath’s share in this case will be less than(1 − α)(1 − β).
If she selectsγ such thatαγ > (1 − α)(1 − β), then Alice will chooseACQ, leaving Cath
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with BCR, of areaβ(1 − γ). Her share in this case will be less thanβ(1 − 1
α
(1 − α)(1 − β)).

If she selectsγ = 1
α
(1 − α)(1 − β), then Alice’s two possible pieces will have the same

area, so she will make her decision to favour Cath, and thus Cath will get a piece of area
max{(1− α)(1− β), β(1− 1

α
(1− α)(1− β))}. The last option is obviously preferable, if it is

possible (i.e. ifα 6= 0 and the required value ofγ is≤ 1); if not, only the first option is possible
and Cath will simply want to maximizeαγ (there is a slight exception here ifα = 0 andβ = 1).
So Cath will chooseγ according to the following rule:

a) if α = 0 andβ = 1, thenγ = 0, which gives Alice0, Cath1, and Bess0;

b) if α < (1−α)(1− β), thenγ = 1, which gives Alice(1−α)(1− β), Cathα, and Bess0;

c) if 0 6= α ≥ (1−α)(1− β), thenγ = 1
α
(1−α)(1− β), which gives Alice(1−α)(1− β),

Cathmax{(1−α)(1−β), β(1− 1
α
(1−α)(1−β))}, and Bessmin{(1−α)(1−β), β(1−

1
α
(1 − α)(1 − β))}.

Knowing this, Bess reasons as follows. Ifα = 0, then Bess is certain to get0, so she should
chooseβ = 1 to favour Cath; this gives Alice0. If α = 1, then Bess is certain to get0, so
again she should chooseβ = 1 to favour Cath; this too gives Alice0. If 0 < α < 1, she should
chooseβ so as to ensure thatα ≥ (1 − α)(1 − β) and, subject to that constraint, maximize
min{(1−α)(1−β), β(1− 1

α
(1−α)(1−β))}. Now asβ increases from0 to 1, (1−α)(1−β)

decreases from1−α to 0, andβ(1− 1
α
(1−α)(1− β)) increases from0 to 1. So the minimum

is maximized when the two are equal, i.e. when

1 = (
1

α
+

1

β
)(1 − α)(1 − β),

which must happen for a uniqueβ ∈ (0, 1). A simple calculation shows that this uniqueβ is
nothing other than1−α, and it does indeed satisfy the constraintα ≥ (1−α)(1−β). So in this
case Bess should chooseβ = 1 − α, which will give Alice α(1 − α). Knowing that Bess and
Cath will decide according to these rules, Alice’s best option is clearly to maximizeα(1 − α)
by selectingα = 1

2
, i.e. choosingA to be the midpoint ofPQ. Bess and Cass will then also

choose the midpoints, and Alice will have to flip a coin to decide on left or right, because all
four pieces will be exactly a quarter of the total area.

3. The members of a tennis club are planning a doubles carnival consisting of several rounds. In
the spirit of social tennis, results don’t matter, but participation does; so in each round, every
member is to play in exactly one game. Each round is to be either a mixed doubles round, in
which every game involves two male and two female players, oran ordinary doubles round,
in which every game involves four players of the same gender.There is a further requirement
that over the whole carnival, any two members play in the samegame exactly once; whether
they are partners or opponents in this game is immaterial. Ifthere are2k male and2k female
members, for what (positive integer) values ofk is this possible?

Solution. We will prove that this is possible if and only ifk is odd (i.e. the total number of
members is a power of4). Firstly, suppose that it is possible, and letr be the number of rounds.
In every round, Member A plays with three other members, and the total3r is meant to equal
2k+1 − 1. So we must have2k+1 ≡ 1 mod3, which forcesk to be odd.

Now assumek is odd, and letn = k+1
2

, so that the number of members is4n. Write F2 for the
field with two elements{0, 1}, andF4 = F2[α] for the degree-2 extension{0, 1, α, α+1}, where
α2 = α + 1. TheF4-vector spaceFn

4 = {(x1, x2, · · · , xn) | xi ∈ F4} has4n elements, which we
can assign bijectively to the members of the tennis club in such a way that the males are those
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whose first coordinatex1 is either0 or 1, while the females are those such thatx1 is eitherα
or α + 1. To construct the schedule, we index the rounds by the one-dimensionalF4-subspaces
of Fn

4 . If L is such a one-dimensional subspace, we let the games in that round be the cosets
L+(a1, a2, · · · , an). It is well known that every element ofFn

4 is contained in exactly one coset
of L, so every member will play in exactly one game in each round. If the elements ofL all have
zero first coordinate, then the elements of each cosetL + (a1, a2, · · · , an) will have the same
first coordinate, and hence the players in every game in that round will have the same gender. If
some element ofL has nonzero first coordinate, then the four elements ofL must have the four
different first coordinates, and the same is therefore true for each coset, so that gives a mixed
doubles round. Finally, two distinct elements(a1, a2, · · · , an) and(b1, b2, · · · , bn) of Fn

4 belong
to exactly one coset together, namelyF4(b1 − a1, b2 − a2, · · · , bn − an) + (a1, a2, · · · , an). So
any two members play in the same game exactly once.

4. Let T be a tree withn vertices. (A tree is a connected graph with no cycles.) Fix1 ≤ k ≤ n,
and letSk be the set of allk-element subsets of the set of vertices ofT . For anyS ∈ Sk, let c(S)
be the number of connected components of the subgraph obtained by restricting to the vertices
in S (i.e. deleting all of the tree except the vertices inS and the edges between them). Prove
that

∑
S∈Sk

c(S) = (n − k + 1)
(

n−1
k−1

)
.

Solution. The subgraph ofT obtained by restricting to the vertices inS is a forest (a
disconnected union of trees). It is easy to prove by induction that the number of connected
components of a forest equals the number of vertices minus the number of edges. Hencec(S) =
k− e(S), wheree(S) is the number of edges between elements ofS. Moreover, there aren− 1
edges inT , each of which belongs to

(
n−2
k−2

)
subsets inSk. Hence

∑

S∈Sk

c(S) = k

(
n

k

)
−(n−1)

(
n − 2

k − 2

)
= n

(
n − 1

k − 1

)
−(k−1)

(
n − 1

k − 1

)
= (n−k+1)

(
n − 1

k − 1

)
,

as required.

5. Say that a rational numberr is splittable if the cubic polynomialx3 − 3x − r factorizes as
(x − r1)(x − r2)(x − r3) wherer1, r2, r3 are rational. Find polynomialsf andg with integer
coefficients such thatr is splittable if and only ifr = f(t)

g(t)
for some rational numbert.

Solution. Clearlyr is splittable if and only if there exist rationalr1, r2, r3 such that

r1 + r2 + r3 = 0,

r1r2 + r1r3 + r2r3 = −3,

r1r2r3 = r.

For a fixedr1, the first two equations can be rewritten as

r2 + r3 = −r1,

r2r3 = r2
1 − 3.

Hencer2 andr3 are the roots of the quadraticx2 + r1x + (r2
1 − 3), and they are rational if and
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only if the discriminantr2
1 − 4(r2

1 − 3) = 12 − 3r2
1 is the square of a rational number. Now

12 − 3r2
1 is the square of a rational number

⇐⇒ r1 = 2 or
12 − 3r2

1

(2 − r1)2
is the square of a rational number

⇐⇒ r1 = 2 or
6 + 3r1

2 − r1
= t2 for somet ∈ Q

⇐⇒ r1 = 2 or r1 =
2t2 − 6

t2 + 3
for somet ∈ Q.

Suppose thatr is splittable. Since it is impossible for all ofr1, r2, r3 to equal2, we can renumber
if necessary to ensure thatr1 6= 2, so

r = r1r2r3 = r1(r
2
1 − 3)

=
(2t2 − 6)((2t2 − 6)2 − 3(t2 + 3)2)

(t2 + 3)3

=
(2t2 − 6)(t4 − 42t2 + 9)

(t2 + 3)3
, for somet ∈ Q.

Conversely, ifr has this form for somet ∈ Q, we can letr1 = 2t2−6
t2+3

and findr2, r3 by solving

the quadratic. (The solutions are−t2±6t+3
t2+3

.) So one solution to the problem is

f(t) = (2t2 − 6)(t4 − 42t2 + 9), g(t) = (t2 + 3)3.

6. Let n be a positive integer. This question concerns sets ofn integers{a1, a2, · · · , an} which
have the property that the

(
n
2

)
differences|aj −ai|, 1 ≤ i < j ≤ n, are all distinct. For example,

the set of the firstn powers of2, namely{1, 2, 4, 8, · · · , 2n−1}, has this property. Construct a
set with this property for which the differences|aj − ai| are all less thane

n+2

2 .

Solution. It suffices to construct an increasing sequencea1 < a2 < a3 < · · · of positive
integers such thatan < e

n+2

2 and all the differencesaj − ai, i < j, are distinct. Given this, it is
obvious that{a1, · · · , an} is a set with the required properties, for anyn ≥ 1.

If “construct” is interpreted no more strongly than “define”, one can use the Mian-Chowla
sequence, which is defined by settinga1 = 1, a2 = 2, and then successively choosinga3, a4, · · ·
to be the smallest positive integers such that all the differences of the terms chosen so far are
distinct. It is easy to see that in choosingan, at most(n − 1)3 values are ruled out, soan ≤
(n−1)3+1 for all n. Since(n−1)3+1 < e

n+2

2 for n ≥ 13, one need only check thatan < e
n+2

2

holds forn up to12. However, there is no known formula for thenth term of the Mian-Chowla
sequence, so this is arguably unsatisfactory as a “construction”.

One of many possible alternatives is the following sequencedefined by a second-order recur-
rence relation and initial conditions:

a1 = 1, a2 = 4, an = an−1 + an−2 + (n − 2) for n ≥ 3.

This sequence begins1, 4, 6, 12, 21, 37, 63, · · · and is clearly an increasing sequence of positive
integers. An explicit formula, which can be found by standard methods (and is in any case easy
to prove by induction) is:

an =
2
√

5 + 1√
5

(
1 +

√
5

2

)n

+
2
√

5 − 1√
5

(
1 −

√
5

2

)n

− n − 1, for all n ≥ 1.
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From this it is easy to see that

an <
2
√

5 + 1√
5

(
1 +

√
5

2

)n

< e(
√

e)n = e
n+2

2 .

We now prove by contradiction that the differencesaj − ai, i < j, are distinct. Suppose that
aj − ai = al − ak, wherei < j, k < l, andj < l. (It is clear thatj = l would forcei = k, so
there is no need to allow this possibility.) There are two cases.
Case 1: k ≤ l − 2. In this case, we have

al − ak ≥ al − al−2 = al−1 + (l − 2) > al−1 ≥ aj > aj − ai,

giving the required contradiction.
Case 2: k = l − 1. In this case, we have

aj > aj − ai = al − al−1 = al−2 + (l − 2) ≥ al−2,

which forcesj = l − 1. If l = 3, this means that4 − ai = 6 − 4, clearly impossible; and if
l ≥ 4,

ai = al−1 − (aj − ai) = al−1 − (al−2 + (l − 2)) = al−3 − 1,

which is also clearly impossible.

7. Let A = (aij)
n
i,j=1 be a square matrix of real numbers which is skew-symmetric, meaning that

aij = −aji for all i, j. Define a new skew-symmetric matrixB = (bij)
n
i,j=1 as follows:

bij =





−aij +
∑

p≥1

(−1)p+1
∑

i1,i2,··· ,ip∈Z

i<i1<i2<···<ip<j

aii1ai1i2ai2i3 · · ·aipj , if i < j,

0, if i = j,

−bji, if i > j.

Prove thatdet(B) = det(A).

Solution. For any skew-symmetric matrixA, we have

det(A) = det(At) = det(−A) = (−1)n det(A).

So if n is odd, we must havedet(A) = 0. Thus the question only has content whenn is even,
which we assume henceforth.

Let Ã = (ãij)
n
i,j=1 andB̃ = (̃bij)

n
i,j=1 be the upper-triangular matrices obtained fromA and

B respectively by setting all below-diagonal entries to0 and all diagonal entries to1. Then

A = Ã − Ãt andB = B̃ − B̃t.

We claim thatB̃ = Ã−1; since these are square matrices, it suffices to prove thatÃB̃ is the
identity matrix. It is clear that̃AB̃ is upper-triangular with all diagonal entries equal to1. For
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anyi < k, its (i, k)-entry is
∑

j

ãij b̃jk = aik + bik +
∑

i<j<k

aijbjk

=
∑

p≥1

(−1)p+1
∑

i1,i2,··· ,ip∈Z

i<i1<i2<···<ip<k

aii1ai1i2 · · ·aipk

+
∑

i<j<k

aij

∑

q≥0

(−1)q+1
∑

j1,j2,··· ,jq∈Z

j<j1<j2<···<jq<k

ajj1aj1j2 · · ·ajqk

= 0,

because the term indexed byp, i1, i2, · · · , ip cancels that indexed byj = i1, q = p − 1, j1 =
i2, · · · , jp−1 = ip. So the claim is proved, and it implies that

B = B̃ − B̃t = (B̃tÃt)B̃ − B̃t(ÃB̃) = B̃t(Ãt − Ã)B̃ = −B̃tAB̃.

Hence
det(B) = det(−B̃tAB̃) = (−1)n det(B̃t) det(A) det(B̃) = det(A),

sincedet(B̃) is clearly1.

8. Take a cube with edges of length1. Fix a length0 < ℓ < 1√
2
, and attach a square to each face

whose centre is the centre of the face, whose sides have length ℓ, and whose edges are (initially)
parallel to the edges of the face. Now rotate each of these sixsquares anti-clockwise about the
centre of its face, through some angle0 < θ < π

4
(the same angle for all six). LetA be a vertex

of the square on faceF , let F ′ be the face which is closest toA of those adjacent toF , and let
B andC be the vertices of the square on faceF ′ which are closest toA. Prove that there are
unique values ofℓ andθ (subject to the above bounds) for whichABC is an equilateral triangle,
and that this value ofℓ is irrational.

Solution. Set up coordinates so that the vertices of the cube are(±1
2
,±1

2
,±1

2
) (independent

signs). Letα = ℓ√
2
cos(θ + π

4
), β = ℓ√

2
sin(θ + π

4
). We can assume that faceF is the one with

equationx = 1
2
, and then the vertices of the square on faceF are(1

2
,±α,±β) and(1

2
,±β,∓α).

By symmetry it does not matter which one we callA, so letA = (1
2
, β,−α). The faceF ′ is then

the one with equationy = 1
2
, andB = (β, 1

2
, α), C = (α, 1

2
,−β) are the two closest vertices.

We have

|AB|2 = 2(β− 1
2
)2 +4α2, |AC|2 = (α− 1

2
)2 +(β− 1

2
)2 +(α−β)2, |BC|2 = ℓ2 = 2α2 +2β2.

So |AB| = |BC| if and only if

2(β − 1
2
)2 + 4α2 = 2α2 + 2β2, i.e.

−2β + 1
2

+ 2α2 = 0, i.e.β = α2 + 1
4
,

and|AC| = |BC| if and only if

(α − 1
2
)2 + (β − 1

2
)2 + (α − β)2 = 2α2 + 2β2, i.e.

−α − β − 2αβ + 1
2

= 0.

Eliminatingβ from these two equations, we find that

−α − α2 − 1
4
− 2α3 − 1

2
α + 1

2
= 0, i.e.

8α3 + 4α2 + 6α − 1 = 0.



SUMS Problem Competition 2007 Page 7

Elementary calculus shows that8x3 + 4x2 + 6x − 1 has exactly one real root, which lies in
the open interval(0, 1

6
). So there are unique values ofα andβ for which the triangleABC

is equilateral; but we need to check thatℓ andθ are also uniquely determined and satisfy the
bounds in the question. We have

ℓ2 = 2α2 + 2β2 = 2α4 + 3α2 + 1
8

= α(−α2 − 3
2
α + 1

4
) + 3α2 + 1

8

= −α3 + 3
2
α2 + 1

4
α + 1

8

= 2α2 + α < 2(1
6
)2 + 1

6
< 1

2
,

so ℓ is uniquely determined and satisfies0 < ℓ < 1√
2
. The fact that0 < α < β means that

θ = tan−1(β
α
) − π

4
is in the interval(0, π

4
) as required. Finally we need to prove thatℓ is

irrational, for which it suffices to show thatℓ2 is irrational. If ℓ2 = 2α2 + α were rational,
thenα would be either a rational number or a quadratic irrational (the latter meaning that the
minimal polynomial ofα overQ has degree2). But a rational root of8x3 +4x2 +6x−1 would
have to have denominator dividing8, and it is clear that1

8
is not a root, so the unique real rootα

is irrational. This also shows that8x3 +4x2 +6x−1 is irreducible inQ[x], sox3 + 1
2
x2 + 3

4
x− 1

8

is the minimal polynomial ofα, and we are finished.
The polyhedron formed by the vertices of the six squares, with these particular values ofℓ

andθ, is an Archimedean solid called thesnub cube; apart from the six squares, its other faces
are32 equilateral triangles, all congruent toABC. The fact thatα has degree3 overQ shows
that the snub cube cannot be constructed by straightedge andcompass.

9. Let h(n) denote the number of permutations of the set{1, · · · , n} which do not preserve any
two-element subset{i, j}. (In other words, there are no two elementsi, j which the permutation
leaves fixed, nor are there two elementsi, j which the permutation swaps.) Show that

lim
n→∞

h(n)

n!
= 2e−3/2.

Solution. Let f(n) denote the number of permutations of{1, · · · , n} which have no1-cycles
(i.e. fix no elements) and no2-cycles (i.e. there are no two elements which the permutation
swaps). Thenh(n) counts the same permutations asf(n), but in addition counts the permuta-
tions with a single1-cycle and no2-cycles. The number of permutations of the latter kind is
clearlynf(n − 1), so

h(n) = f(n) + nf(n − 1), and
h(n)

n!
=

f(n)

n!
+

f(n − 1)

(n − 1)!
.

Thus the desired limit will follow if we can show thatlimn→∞
f(n)
n!

= e−3/2. This in turn will
follow from the following formula:

f(n)

n!
= sum of the coefficients ofx0, x1, · · · , xn in the Taylor series ofexp(−x) exp(−x2

2
)

=
∑

m1,m2≥0
m1+2m2≤n

(−1)m1+m2

m1!2m2m2!
.

One can obtain the second expression directly by inclusion/exclusion counting. A slicker ap-
proach uses the following identity of formal power series inthe variablesp1, p2, p3, · · · :

∑

n≥0

1

n!

∑

w∈Sn

pw = exp(
∑

i≥1

pi

i
),
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whereSn denotes the group of permutations of{1, · · · , n}, andpw is defined to bepa1

1 pa2

2 pa3

3 · · ·
if w hasa1 1-cycles,a2 2-cycles,a3 3-cycles, and so on. Specializing this identity at the values
p1 = 0, p2 = 0, pi = x for i ≥ 3, we get an equality of power series inx:

∑

n≥0

f(n)

n!
xn = exp(

∑

i≥3

xi

i
)

= exp(− log(1 − x) − x − x2

2
)

=
exp(−x) exp(−x2

2
)

1 − x
,

from which the formula follows. There is an obvious generalization to counting permutations
with other length cycles excluded.

10. For any positive integersm ≤ n, let an,m denote the number of surjective functions from
{1, 2, · · · , n} to {1, 2, · · · , m}. Define a polynomialpn(x) by the formula

pn(x) = an,1(x − 1)n−1 + an,2(x − 1)n−2 + · · · + an,n−1(x − 1) + an,n.

Let bn,d denote the coefficient ofxd in pn(x). Prove thatbn,d ≥ 0 for all 0 ≤ d ≤ n − 1.

Solution. (First Method) We seek a recurrence relation forpn(x). The first step is to note
that any surjective functionf : {1, 2, · · · , n} → {1, 2, · · · , m} is of one of two types: either
f(n) = f(j) for somej < n or not. In the first case, the restriction off to {1, · · · , n − 1} is
still surjective, so it can be chosen inan−1,m ways, and then there arem choices forf(n). In
the second case, there are stillm choices forf(n), and the restriction off to {1, · · · , n − 1}
is surjective onto{1, 2, · · · , m} \ {f(n)}, so it can be chosen inan−1,m−1 ways. Thus we have
the recurrence relation

an,m = m(an−1,m + an−1,m−1) for all n ≥ 2,

wherean−1,i is interpreted as0 if i = 0 or i = n. If we define a polynomialqn(x) =∑n
m=1 an,mxm, this recurrence relation can be reformulated

qn(x) =

n−1∑

m=1

man−1,mxm +

n∑

m=2

man−1,m−1x
m

= x

n−1∑

m=1

man−1,mxm−1 +

n−1∑

m=1

(m + 1)an−1,mxm+1

= xq′n−1(x) + x2q′n−1(x) + xqn−1(x),

for all n ≥ 2. Now if we definern(x) =
∑n

m=1 an,mxn−m, we have

qn(x) = xnrn(x
−1), soq′n(x) = nxn−1rn(x−1) − xn−2r′n(x−1).

Substituting these expressions, we find that

xnrn(x−1) = (x + x2)[(n − 1)xn−2rn−1(x
−1) − xn−3r′n−1(x

−1)] + xnrn−1(x
−1)

= (nxn + (n − 1)xn−1)rn−1(x
−1) − (xn−1 + xn−2)r′n−1(x

−1).
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Dividing through byxn and replacingx by x−1, this says

rn(x) = ((n − 1)x + n)rn−1(x) − x(x + 1)r′n−1(x).

Sincepn(x) is by definitionrn(x − 1), this implies that

pn(x) = ((n − 1)x + 1)pn−1(x) − x(x − 1)p′n−1(x),

for all n ≥ 2. This is our desired recurrence relation.
Now definebn,d to be the coefficient ofxd in pn(x) as in the question. Our recurrence relation

implies that

bn,d = (n − 1)bn−1,d−1 + bn−1,d − (d − 1)bn−1,d−1 + dbn−1,d

= (n − d)bn−1,d−1 + (d + 1)bn−1,d,

for all n ≥ 2. From this recurrence and the fact thatp1(x) = 1, it easily follows by induction
that allbn,d are nonnegative.

(Second Method) This method starts from the observation that

an,m =
∑

n1,n2,··· ,nm≥1
n1+n2+···+nm=n

n!

n1!n2! · · ·nm!
.

This is because any surjective functionf : {1, 2, · · · , n} → {1, 2, · · · , m} determines such a
sequencen1, · · · , nm byni = |f−1(i)|, and for fixedni’s the number of corresponding functions
is the multinomial coefficient n!

n1!n2!···nm!
.

Now let Sn be the group of all permutations of{1, · · · , n}, and setI = {1, 2, · · · , n − 1}.
For σ ∈ Sn, we say thati ∈ I is a descent ofσ if σ(i + 1) < σ(i), and we writeD(σ) for the
set of descents ofσ. Forn1, · · · , nm as above, define

J(n1, · · · , nm) = {1, · · · , n} \ {n1, n1 + n2, n1 + n2 + n3, · · · , n1 + n2 + · · ·nm}.

Clearly J(n1, · · · , nm) ⊆ I. We then have another interpretation of the above multinomial
coefficient:

n!

n1!n2! · · ·nm!
= |{σ ∈ Sn | J(n1, · · · , nm) ⊆ D(σ)}|.

This is clear, once you rewrite the condition on the right in the following equivalent form:

σ(1) > σ(2) > · · · > σ(n1),

σ(n1 + 1) > σ(n1 + 2) > · · · > σ(n1 + n2),

· · ·
σ(n1 + n2 + · · ·nm−1 + 1) > σ(n1 + n2 + · · ·nm−1 + 2) > · · · > σ(n).

Hence we can write

an,m =
∑

n1,n2,··· ,nm≥1
n1+n2+···+nm=n

|{σ ∈ Sn | J(n1, · · · , nm) ⊆ D(σ)}|

=
∑

J⊆I
|J |=n−m

|{σ ∈ Sn | J ⊆ D(σ)}|.
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Substituting this in the definition ofpn(x), we obtain

pn(x) =
n∑

m=1

∑

J⊆I
|J |=n−m

|{σ ∈ Sn | J ⊆ D(σ)}| (x− 1)n−m

=
∑

J⊆I

|{σ ∈ Sn | J ⊆ D(σ)}| (x− 1)|J |

=
∑

J⊆I

|J |∑

k=0

|{σ ∈ Sn | J ⊆ D(σ)}|
(|J |

k

)
xk(−1)|J |−k

=
∑

J⊆I

∑

K⊆J

|{σ ∈ Sn | J ⊆ D(σ)}| x|K|(−1)|J |−|K|.

Reversing the order of summation and settingJ ′ = I \ J , this becomes

pn(x) =
∑

K⊆I

x|K|
∑

J ′⊆(I\K)

(−1)|J
′|−|I\K||{σ ∈ Sn | (I \ D(σ)) ⊆ J ′}|.

Now the sum overJ ′ is exactly the inclusion/exclusion formula for

|{σ ∈ Sn | (I \ D(σ)) = (I \ K)}|.

So we have

pn(x) =
∑

K⊆I

x|K||{σ ∈ Sn |D(σ) = K}|

=
n−1∑

d=0

|{σ ∈ Sn | |D(σ)| = d}| xd.

Sobn,d is not only nonnegative, it has a simple combinatorial interpretation: it is the number of
permutations of{1, · · · , n} which haved descents. This is usually called theEulerian number
A(n, d + 1) (see Stanley,Enumerative Combinatorics volume 1, page 22).


