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1. Among the numberg!, 22, ... 20 there are3 whose first digit isl (namely,2* = 16, 27 =
128, and2!'® = 1024). It turns out that among the numbeXs 2?2, ... 2% there are30 whose
first digit is 1; and among the numbes, 22, - - - , 219 there are301 whose first digit isl. For
any positive integetV, defineay by the rule that among the numbe&swith 1 < n < 107,
there areny whose first digit isl. Prove thatuy; is always obtained from, by adding a
single digit at the end.

Solution. A positive integer has first digitexactly when it lies in the interval 0°, 2 x 10°) for
somes > 0. For anys > 0, there is exactly one positive integesuch thafl0® < 2% < 2 x 10°:
the reason is that on taking logarithms basehese inequalities beconieg,(10°) < k£ <
log,(10%) + 1, which means that = [log,(10%)]. Also note that forV > 1,

10{101\7 log;, 2] < 210N < 10[101\’ logo2/+1

Consequently, among the numbérswith 1 < n < 10%, there is exactly one in the interval
[10%,2 x 10%) for everys € {1,2,---,10Ylog,,2}. This proves thatiy = |10V log,, 2],
which is just the number formed by the fir3t digits after the decimal point itbg,,2 =
0.30102999566 - - -. The result is now obvious.

2. The sisters Alice, Bess, and Cath are fighting over a triaarquikzza, which may be imagined
as a triangleP@QR. Their father David proposes the following procedure farghg it between
the four of them. Alice will select a poind on the edge”(@), then Bess will select a poiri?
on the edge’ R, then Cath will select a poirtt’ on the edge&) R. David will then cut the pizza
along the linesAB, BC, and AC, and take the centre pieceBC for himself, leaving three
corner pieces (some possibly empty, if endpoints of edges haen chosen). The sisters will
then either all take the corner piece to the left of the pdiey/tselected, or all take the corner
piece to the right of their point; Alice (as the eldest) witgo choose left or right. As everyone
knows, each sister will make her choices purely to maxintizearea of her own share, except
that Alice and Bess, if their own shares are unaffected,agiilto the advantage of the youngest
sister Cath. If they all reason perfectly, what will they do?

Solution. Write | XY Z| for the area of triangleXY Z, and normalizd PQR| to be 1.
Consider Cath’s decision in selecting the padint At this stageA and B have already been
chosen. Letv = %, 6= % (already determined), and = % (to be chosen by Cath);
then0 < o, 3,7 < 1, and

|ABP| = (1 - a)(1 =), [ACQ| = ary, [BCR| = 5(1 = 7).

Cath knows that if she selectssuch thaivy < (1 — «)(1 — ), then Alice will chooseABP,
leaving Cath withAC'Q), of areany. Cath’s share in this case will be less tHan- «)(1 — ).
If she selectsy such thatay > (1 — a)(1 — (), then Alice will chooseACQ), leaving Cath
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with BCR, of areas(1 — v). Her share in this case will be less thafi — 1(1 — a)(1 — 3)).

If she selectsy = (1 — a)(1 — §3), then Alice’s two possible pieces will have the same
area, so she will make her decision to favour Cath, and thuls @dl get a piece of area
max{(1 —a)(1 - 8),3(1 — (1 — «)(1 — B))}. The last option is obviously preferable, if it is
possible (i.e. itv # 0 and the required value afis < 1); if not, only the first option is possible
and Cath will simply want to maximize~ (there is a slight exception hereif= 0 ands = 1).

So Cath will choose according to the following rule:

a) if « = 0andg = 1, theny = 0, which gives Alice0, Cath1, and Bes$);
b) if « < (1—a)(1— (), theny = 1, which gives Alice(1 — a)(1 — /3), Catha, and Bes$);
c) if0#£a>(1—a)(1—4),theny = £(1—a)(1— 3), which gives Alice(1 — o) (1 — 3),
Cathmax{(1—a)(1—-3),3(1— (1 —a)(1—0))}, and Bessnin{(1 —a)(1—3), 3(1 -
(1 —a)(1-8))}
Knowing this, Bess reasons as follows.alf= 0, then Bess is certain to get so she should
chooses = 1 to favour Cath; this gives Alicé. If « = 1, then Bess is certain to géf so
again she should chooge= 1 to favour Cath; this too gives Alice. If 0 < « < 1, she should
chooses so as to ensure that > (1 — «)(1 — ) and, subject to that constraint, maximize
min{(1—a)(1—-4),3(1 - (1 —a)(1—3))}. Now asg increases from to 1, (1 — ) (1 — 3)
decreases from— « t0 0, and3(1 — (1 — «)(1 — §)) increases from to 1. So the minimum
iIs maximized when the two are equal, i.e. when

1= (4 %><1 —a)(1- ),

(8
which must happen for a unique € (0,1). A simple calculation shows that this unigads
nothing other than — o, and it does indeed satisfy the constraint (1 —a)(1— ). Soin this
case Bess should choo8e= 1 — «a, which will give Alice o(1 — o). Knowing that Bess and
Cath will decide according to these rules, Alice’s bestapis clearly to maximizer(1 — «)
by selectingn = % i.e. choosingA to be the midpoint ofP(). Bess and Cass will then also
choose the midpoints, and Alice will have to flip a coin to decon left or right, because all
four pieces will be exactly a quarter of the total area.

. The members of a tennis club are planning a doubles carnivedisting of several rounds. In
the spirit of social tennis, results don’t matter, but gaptation does; so in each round, every
member is to play in exactly one game. Each round is to beredtimeixed doubles round, in
which every game involves two male and two female playersnoordinary doubles round,
in which every game involves four players of the same gentieere is a further requirement
that over the whole carnival, any two members play in the sgame exactly once; whether
they are partners or opponents in this game is immateridhelfe are2* male anc2* female
members, for what (positive integer) valueskas this possible?

Solution.  We will prove that this is possible if and only ifis odd (i.e. the total number of
members is a power df). Firstly, suppose that it is possible, and/die the number of rounds.
In every round, Member A plays with three other members, aeddtal3r is meant to equal
2F+1 _ 1. So we must have**! = 1 mod3, which forcesk to be odd.

Now assume: is odd, and let, = % so that the number of memberslis Write IF,, for the
field with two elementg0, 1}, andF, = Fy[a] for the degree extension 0, 1, a, a+1}, where
a? = a+ 1. TheF,-vector spac& = {(z1,zs, - ,x,) | ; € F4} has4™ elements, which we
can assign bijectively to the members of the tennis club aihnsuway that the males are those
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whose first coordinate; is either0 or 1, while the females are those such thatis eithera

or o + 1. To construct the schedule, we index the rounds by the ameftsionalF',-subspaces
of F}. If L is such a one-dimensional subspace, we let the games inotlnad be the cosets
L+ (ay,as,--- ,a,). Itis well known that every element &, is contained in exactly one coset
of L, so every member will play in exactly one game in each rouittielelements of. all have
zero first coordinate, then the elements of each cbset(ay, as, - - - , a,,) Will have the same
first coordinate, and hence the players in every game in dliaick will have the same gender. If
some element of. has nonzero first coordinate, then the four elemenis miust have the four
different first coordinates, and the same is therefore tou@#éch coset, so that gives a mixed
doubles round. Finally, two distinct elemeffts, as, - - - ,a,) and(by, be, - - - , b,) of F} belong
to exactly one coset together, namely v, — a;, by — as, -+ , b, — a,) + (a1, a9, -+ ,a,). SO
any two members play in the same game exactly once.

. Let T be a tree witm vertices. (A tree is a connected graph with no cycles.)IFx k& < n,
and letS;, be the set of alk-element subsets of the set of vertice§ofFor anyS € Sy, letc(.S)

be the number of connected components of the subgraph etitajnrestricting to the vertices
in S (i.e. deleting all of the tree except the verticesSimnd the edges between them). Prove
that) gcs, c(S) = (n —k+ 1)(’;:}).

Solution. The subgraph of” obtained by restricting to the vertices kis a forest (a
disconnected union of trees). It is easy to prove by indacti@mt the number of connected
components of a forest equals the number of vertices mirusimber of edges. HenegS) =

k —e(S), wheree(S) is the number of edges between elementS.dfloreover, there are — 1
edges irl’, each of which belongs tf'~>) subsets irS;. Hence

> )= o) -0 (37D =n (i) w0 (p ) =wren(( 7))

as required.

. Say that a rational numberis splittable if the cubic polynomial® — 3z — r factorizes as
(x —r)(x — ) (z — r3) Wherery, r, r3 are rational. Find polynomialg andg with integer
coefficients such thatis splittable if and only ifr = % for some rational numbet

Solution. Clearlyr is splittable if and only if there exist rationa{, r», r3 such that

7’1+7“2+7“3:0,
r17To +’I“1’f’3 +7’2’I“3 = —3,

r1Trorg =T.
For a fixedry, the first two equations can be rewritten as

To + 13 = —T1,

ToTg = r% - 3.

Hencer, andr; are the roots of the quadratié + r1x + (r} — 3), and they are rational if and
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only if the discriminant? — 4(r? — 3) = 12 — 3r? is the square of a rational number. Now

12 — 3r7 is the square of a rational number
2

= ry=20r 5 IS the square of a rational number

(2—1r)
<:>r1:20rw:t2forsomete<@
_m2_6
<:>r1:2orr1:mforsomete(@.

Suppose thatis splittable. Since it is impossible for all of, r5, 3 to equak, we can renumber
if necessary to ensure that # 2, so

r=rror3 = 11 (r — 3)
(2t2 — 6)((2t2 — 6)% — 3(t% + 3)?)

(7 + 3
(2t% — 6)(t* — 42t* +9)
= , for somet € Q.
(t2+3)? 0
Conversely, ifr has this form for some € Q, we can let; = Qtf;f and findr,, 73 by solving
the quadratic. (The solutions aFéjif%?’.) So one solution to the problem is

f) = (2t — 6)(t* — 42t> +9), g(t) = (* + 3)°.

. Let n be a positive integer. This question concerns sets iotegers{a;, as, - - - , a,} which
have the property that tr((g) differencega; —a;|, 1 < i < j < n, are all distinct. For example,
the set of the first, powers of2, namely{1,2, 4.8, ---,2""'}, has this property. Construct a
set with this property for which the differencgg — «;| are all less than™s".

Solution. It suffices to construct an increasing sequeace< a, < az < --- Of positive
integers such that, < ¢"z and all the differences; — a;, ¢ < j, are distinct. Given this, it is
obvious thaf{as, - - - ,a,} is a set with the required properties, for any> 1.

If “construct” is interpreted no more strongly than “defin@he can use the Mian-Chowla
sequence, which is defined by setting= 1, a» = 2, and then successively choosingay, - - -
to be the smallest positive integers such that all the diffees of the terms chosen so far are
distinct. It is easy to see that in choosiag at most(n — 1)3 values are ruled out, sg, <
(n—1)%+1foralln. Since(n—1)*+1 < ¢"z" for n > 13, one need only check that < ¢"=*
holds forn up to12. However, there is no known formula for théh term of the Mian-Chowla
sequence, so this is arguably unsatisfactory as a “conistnic

One of many possible alternatives is the following sequeletmed by a second-order recur-

rence relation and initial conditions:
ap =1, a3 =4, a, =a,_1+ ap_o+ (n—2)forn > 3.

This sequence beginis4, 6, 12,21, 37,63, - - - and is clearly an increasing sequence of positive
integers. An explicit formula, which can be found by stamdaethods (and is in any case easy
to prove by induction) is:

2541 <1+\/3>”+2\/5—1 (1—\/5

an, —n—1, foralln > 1.
V5 2 V5 2 )
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From this it is easy to see that

2\/3;1 <1+2¢5> oA = e

We now prove by contradiction that the differenegs- a;, ¢ < j, are distinct. Suppose that
a; —a; = a; — a,, Wherei < j, k < [, andj < [. (Itis clear thatj = [ would force: = k, so
there is no need to allow this possibility.) There are twaesas

Casel: k <[ — 2. Inthis case, we have

Qn

a—ap>aq—a_2=a_1+ (1 —2)>a_1>a;>a; —a,

giving the required contradiction.
Case2: k =1 — 1. In this case, we have

aj>a;—a;=a— a1 =aq_2+ (1 —2) > aq_,,

which forces; = [ — 1. If [ = 3, this means that — a; = 6 — 4, clearly impossible; and if
[ > 4,
a; =a—1 — (aj — a;) = -1 — (a2 + (1 = 2)) = ay_3 — 1,

which is also clearly impossible.

. Let A = (aj;)};-, be a square matrix of real numbers which is skew-symmet@@mmg that
a;j = —ay; for all i, j. Define a new skew-symmetric matix = (b;;),_, as follows:

1 . . .
—Q; + Z(—l)p+ Z iy Wiyiy Wiy * Ay 1 0 < ]y

p>1 1,02, ip €L
bij — 1<i <t <-<ip<J

0, if i =,
_bji7 if 7 > ]
Prove thatlet(B) = det(A).
Solution. For any skew-symmetric matri®, we have

det(A) = det(A") = det(—A) = (—=1)" det(A).

So if n is odd, we must haveet(A) = 0. Thus the question only has content wheis even,
which we assume henceforth.

Let A = (ij)7 =1 andB = (b, bij)i ;=1 be the upper-triangular matrices obtained frdnand
B respectively by setting all below-diagonal entrie® tand all diagonal entries th Then

A=A— A'andB = B — B".

We claim thatB = A~!; , since these are square matrices, it suffices to proveABats the
identity matrix. It is clear thati B is upper-triangular with all diagonal entries equall td~or



SUMS Problem Competition 2007 Page 6

anyi < k, its (i, k)-entry is

Zawbk—alk—i-bk—i- Z CLZJ ik

J 1<j<k

= Z<_1>P+1 Z aiilailiz e a’ipk

p=1 1,02, ,ipEL
1<ty <ig<---<ip<k

-+ Z Qij Z(—l)q+1 Z Ajj1Ajrjo * " Ajgk

i<j<k q>0 J1,J2, 5Jq €7
J<j1<je<--<j¢<k

=0,
because the term indexed pyi,, iz, - - - , ¢, cancels that indexed by = i,,¢g = p— 1,51 =
@2, , Jp—1 = ip. SO the claim is proved, and it implies that

B=DB-B'=(B'A")B — B'(AB) = B*(A* — A)B = —B'AB.

Hence
det(B) = det(—B*AB) = (—1)" det(B") det(A) det(B) = det(A),

sincedet(B) is clearly1.

8. Take a cube with edges of lengthFix a length0 < ¢ < Lz and attach a square to each face
whose centre is the centre of the face, whose sides havdlgragtd whose edges are (initially)
parallel to the edges of the face. Now rotate each of thesagsiares anti-clockwise about the
centre of its face, through some angle: 0 < 7 (the same angle for all six). Let be a vertex
of the square on facg, let F’ be the face which is closest tb of those adjacent té’, and let
B andC be the vertices of the square on fagewhich are closest tel. Prove that there are
unique values of andé (subject to the above bounds) for whidiBC' is an equilateral triangle,
and that this value of is irrational.

Solution.  Set up coordinates so that the vertices of the cubé-ate+1, +1) (independent
signs). Letn = f cos(0 + %), 8 = f sin(6 + 7). We can assume that fa¢eis the one with

equationz = 3, and then the vertices of the square on facare (5, o, +3) and(%, 3, Fo).
By symmetry it does not matter which one we céjlso letA = (%, B, —«). The faceF” is then
the one with equatiop = 1, andB = (3, 3, ), C = («a, 1, —3) are the two closest vertices.
We have

|AB|* =2(8—1)*+40®, |[AC]? = (a—3)*+(B—3)*+ (a— )% |BC] = =20 +25°.
So|AB| = |BC| if and only if
28— 1) +40” =20+ 203 i.e
—268+142=0,ie.f0=0a"+1
and|AC| = |BC| if and only if
(=3 +(B—3)°+(a—pB)=2a"+26° ie

—a—f—-2a8+45=0.
Eliminating 5 from these two equations, we find that

2

1 3 1 1 i
a—« 1~ 2 sa+35=0,le.

83+ 40 +6a—1=0.
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Elementary calculus shows th&at® + 422 + 62 — 1 has exactly one real root, which lies in
the open interval0, 1). So there are unique values @fand 3 for which the triangleA BC
is equilateral; but we need to check tifaaind# are also uniquely determined and satisfy the
bounds in the question. We have
2 = 20”4 232 :2a4+3a2+%

=a(—a® —3a+ 1)+ 30" + 3

:—a?’—i-%az—i-ia—l—é

=20"+a <23 +1<,
so/ is uniquely determined and satisfies< ¢ < % The fact tha) < a < (8 means that
0 = tan‘l(g) — T is'in the interval(0, T) as required. Finally we need to prove tHais
irrational, for which it suffices to show thdat is irrational. If 2 = 2a? + o were rational,
thena would be either a rational number or a quadratic irratiotta (atter meaning that the
minimal polynomial ofo overQ has degree). But a rational root o822 + 422 + 62 — 1 would
have to have denominator dividiggand it is clear tha§ Is not a root, so the unique real raot
is irrational. This also shows that? +42% + 6z — 1 is irreducible inQ[z], soz® + f22 4+ 3z — 1
is the minimal polynomial ofr, and we are finished.

The polyhedron formed by the vertices of the six squared) thiese particular values &f
andd, is an Archimedean solid called tseub cube; apart from the six squares, its other faces
are 32 equilateral triangles, all congruent toaBC'. The fact thatx has degre8& overQ shows
that the snub cube cannot be constructed by straightedgeoamghss.

. Let h(n) denote the number of permutations of the §ket - - , n} which do not preserve any
two-element subsét, j}. (In other words, there are no two elementswhich the permutation
leaves fixed, nor are there two elementswhich the permutation swaps.) Show that
h
lim ﬂ

= 2¢73/2,

Solution. Let f(n) denote the number of permutations{daf - - - , n} which have nd-cycles
(i.e. fix no elements) and n®-cycles (i.e. there are no two elements which the permurtatio
swaps). Therk(n) counts the same permutationsfds), but in addition counts the permuta-
tions with a singlel-cycle and n@-cycles. The number of permutations of the latter kind is
clearlynf(n —1), so

h(n) = f(n) + nf(n—1), and hr(:f) _/ 7(:) + "(Cfl”_‘li).

Thus the desired limit will follow if we can show théin,, ., Z% = ¢=%2. This in turn will
follow from the following formula:

2
L') = sum of the coefficients of°, ', - - - , 2" in the Taylor series ofxp(—z) exp(—;)
nt
(_1)m1+m2
- mlMZQ>O my!2meamal
mi1+2ma<n

One can obtain the second expression directly by inclusxmhision counting. A slicker ap-
proach uses the following identity of formal power seriethia variable, ps, p3, - - -:

S = en(X D),

n>0 weS, i>1
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wheresS,, denotes the group of permutations{af - - - ,n}, andp,, is defined to be{" p52p5® - - -
if w hasa, 1-cycles,a, 2-cycles,as 3-cycles, and so on. Specializing this identity at the values
p1=0,p, =0, p; =z fori > 3, we get an equality of power seriesan

SO =en( )
n>0 i>3
=exp(—log(l —z) —x — %)

N

T

_exp(—z)exp(—7)
N 1—=2

)

from which the formula follows. There is an obvious geneaiion to counting permutations
with other length cycles excluded.

For any positive integers: < n, let a,,, denote the number of surjective functions from
{1,2,---,n}to{1,2,--- ;m}. Define a polynomiap, (z) by the formula

Pn(x) = apa(x — 1)"_1 + apo(x — 1)"_2 +- o Fapn-1(x— 1)+ ayp.

Letb,, 4 denote the coefficient af? in p, (). Prove thab, ; > 0forall0 < d <n — 1.

Solution.  (First Method) We seek a recurrence relation foy(x). The first step is to note
that any surjective functiorf : {1,2,--- ,n} — {1,2,---,m} is of one of two types: either
f(n) = f(j) for somej < n or not. In the first case, the restriction pfto {1,--- ,n — 1} is
still surjective, so it can be chosendn_, ,, ways, and then there are choices forf(n). In
the second case, there are stillchoices forf(n), and the restriction of to {1, --- ,n — 1}
is surjective ontd 1,2, --- ,m} \ {f(n)}, so it can be chosen i,_; ,,_; ways. Thus we have
the recurrence relation

Apm = M(Ap—1,m + Ap_1,m—1) fOr alln > 2,

wherea,_, ; is interpreted a9 if ; = 0 or: = n. If we define a polynomial,(z) =
S L anma™, this recurrence relation can be reformulated

m=1

n—1 n

for all n > 2. Now if we definer,,(z) = >_" _| a,m2" ™, we have

m=1

¢n(7) = 2", (27Y), soq,(z) = na" r,(z7h) — 2" (7).

Substituting these expressions, we find that

2" (r7t) = (x+2H)[(n — D" r_y (@) — 2" (a7 )] + 2"y (a7

= (2" + (0 = 1" s (o) = (@ 2 (),
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Dividing through byz" and replacing: by 2!, this says

ro(z) = ((n— D+ n)rp_1(z) — z(x+ 1)1, _(x).
Sincep,(x) is by definitionr,,(x — 1), this implies that

Pu(z) = ((n = Dz + Dppa(z) — 2(z — 1)p, 1 (2),

for all n > 2. This is our desired recurrence relation.
Now defineb, , to be the coefficient af? in p,(z) as in the question. Our recurrence relation
implies that

bnag=(n—1by_14-1+bp14— (d—1)bp_14-1+ dby_14
= (n - d)bn—l,d—l + (d + 1)bn—1,d7
for all n > 2. From this recurrence and the fact thatx) = 1, it easily follows by induction

that allb,, ; are nonnegative.
(Second M ethod) This method starts from the observation that

n!
P D .
o nilng! -+ ny,!

ny,n2, -, Nm =1
ni+n2+--+nm=n

This is because any surjective functign {1,2,--- ,n} — {1,2,---,m} determines such a
sequencey, - - - ,n,, byn; = | f~*(4)|, and for fixedn;'s the number of corresponding functions
is the multinomial coefficient—2—.

nilnal-c !

Now let S,, be the group of all permutations ¢t,--- ,n}, and set/ = {1,2,--- ,n — 1}.
Foro € S,, we say that € [ is a descent of if o(i + 1) < o(i), and we writeD(o) for the
set of descents af. Forn,, - - - ,n,, as above, define

J(n1,~-~ ,nm):{l, ,n}\{nl,nl+n2,n1+n2+n3,~-~ ,n1+n2+-~-nm}.

Clearly J(nq,---,n,) C I. We then have another interpretation of the above multiabmi

coefficient: |
n'
i =HoeSulJ(ny, - nm) € D(0)}].

ni'ng! - - ny,!
This is clear, once you rewrite the condition on the rightie tollowing equivalent form:

o(1)>0(2)> - >o0a(n),
oni+1)>0c(ng +2) > > o(ng + na),

oni+no+--np1+1)>0n+no+--np1+2)>--->0(n).
Hence we can write

Q= Z {o € Sn|J(n, -+ ,nm) € D(o)}

ny,n2, -, mm>1
n1+ngt+tnm=n

= > HoeS,|JC D)}

JCI
|J|=n—m
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Substituting this in the definition of,(z), we obtain

pa@) =" Y Ho€8.1JC D)} (@—1)"™

m=1 JCI
|J|=n—m

= o€ Su|JC D)} (z—1)"

JCI

|J]
=Y > HoeS.|JC Do)} <|i|)xk(_1)J|—k

JCI k=0

=> > o€ S8,|JC Do)} a*(=1)HIK

JCI KCJ

Reversing the order of summation and settig- 7 \ J, this becomes

pa(z) =Y a7 ()P o € 5, | (1\ D(o) € J}.

KCI J'C(I\K)
Now the sum over’ is exactly the inclusion/exclusion formula for
{o €5, (1\D(0)) = (I\ K)}|.
So we have

pa(z) =Y a*I|{o € 5, D(0) = K}

KCI

— 3 o € 5.1 IDlo)| = d} .

Sob, 4 is not only nonnegative, it has a simple combinatorial jotetation: it is the number of
permutations of 1, - - - , n} which haved descents. This is usually called tRalerian number
A(n,d+ 1) (see StanleyEnumerative Combinatorics volume 1, page 22).



