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1. For any positive real number, let (z) denote the fractional part of, i.e. the unique element
of [0, 1) such thatr — () is an integer. IV is a positive integer, thecalebased or: and N is
the set{0, (z), (2z),--- ,(Nx), 1}. This has at mos¥ + 2 distinct elements, possibly fewer. If
we list the distinct elements of the scale in ordet s < s; < --- < s, = 1, theintervalsin
the scale are the differences— sg, so — s1,- -+, s, — sp_1. Prove that there are at most three
different intervals.

Solution.  The only way there could be fewer thavi + 2 elements in the scale is if is
rational and can be written in lowest termsé’awvith 1 < ¢ < N. Inthis case, it is clear that

the scale based dhandN is {0, , 2, - -, ‘%1, 1}, and all the intervals equal In more detail:
forall0 <4 < g — 1, we have(m?) = é whenever = ip~! modgq, wherep—! denotes the
multiplicative inverse ofy in Z/qZ (if ¢ = 1, p~! = 0). The set of value§ < m < N which

satisfy this congruence is of the form

N—mi
q

M, MG+ ¢, mi +2q, - -+ ,m; + | lqg=mj,
wherem; is the smallest nonnegative integer congruentptd mod ¢ andm/, is the largest
integer not exceedingy satisfying the same congruence. Note that< ¢ — 1 < N and
m; > N — ¢+ 1. (Of coursem = 0 andmj, = [ ¥ q.)

Now if z is not of the above form, we Iégt be the largest number of the above form which is
less thane, and writex = § +e. Foreach) <i < ¢ — 1, we have a set of scale values

(miz), ((mi + q)x), ((mi + 2q)), - - -, (mz)

corresponding to the values which were equag to theg scale. Our claim is, firstly, that these
values equal » » » »
3+mie,3+(mi+q)e,3+(mi+2q)e,-~-,3+m;e (1)
q q q q
respectively, and, secondly, that the scale consists lgxacthe concatenation of the ‘sub-
scales’ (1) fromi = 0toi = ¢ — 1 with no overlapping, followed by 1. To see this, note
that the claim is certainly true fersufficiently small; and asincreases, the ‘first time’ it fails
is when there is some coincidence of scale values. But suocmaidence means exactly that
§ +e= Zi wherel < ¢ < N, and our maximality assumption cgwensures that we do not
reach this point.
So the possible intervals are as follows: within each sutbes@), all intervals equale; and
between the end of one sub-scale andr) the beginning of the next, we have an interval

1
p + (mip1 — mj)e,
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where we setn, = 0 to cover the final interval also. But,,; —m, = p~' modg, and we have
the bounds
—N<mjy1—m;<qg—1—(N—-q+1)=—-N+2q— 2.

Hence there are at most two possible valugs, — m/ can take, and at most three possible
intervals all told.

. Find the volume of the region iR?* defined by the inequalities

22+ |y <1, [P 2P < PR R <L

Solution. Let R, denote the region defined analogously but witB replaced by a general
positive exponent. It is clear thatR,, contains the cube

Ca = {(z,y,2) € R?||a], |y, |z| < 27"/},

Moreover, if(z,y, z) € R, \ Ca, then exactly one ofz|, |y/, | 2| exceed2~'/*. SoR, \ C, is

the disjoint union of six regions congruent to

{(w,y,2) e R* 27V <o <1, Jyl, |2 < (1 —a)e).

Hence

Vol(R,) = vol(C,) + 6/1 4(1 — z*)¥* da

2—1/a

24 (1
_ 23—3/a + _/ ul/a—l(l - u)2/a du,
@ Ji/2

where we have made the substitutios- '/ in the integral. In the case when= 2/3,

1
VOI(Ryy3) = 27%/% + 36/ u?(1 — w)® du

1/2
1
— @ + 36 |:gu3/2 _ §u5/2 + §u7/2 _ 2u9/2
4 3 5 7 9 12
128 -71V/2
N 35 '

. Let D be a regular dodecahedron with edges of lerigthind the shortest possible length of a
path on the surface db starting at one vertex and finishing at the antipodal vertex.

Solution.  (Sketch.) It is easy to see from a picture or model that thg pakths which
could feasibly be minimal are of two types: one type cros$ig faces and one type crossing
three. We can then unfold the relevant faces and picture #samagular pentagons in the plane;
the minimal length paths are now straight lines. Recall, ttret edges being of length the
diagonals of the pentagons are of length- @ The first kind of path is part of a triangle
whose other sides afe and1, with opposite anglég; thus by the cosine rule its square is

4
4T2—|—1—4TCOS%:6T—|—7%16~7.
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The other kind of path is part of a triangle whose other sides-a+- 1 andr, with opposite
angle“Z; thus its square is

4
(T+1)2+T2—27(T+1)cos§:7T+5z16-3.

So the second kind of path is shorter, and the answgfiis+ 5 = 4/ @

. In this problem, ‘number’ means positive integer. Suppogecansider two numbers to be
essentially equafwritten =) if they become the same when all zeroes are deleted from thei
decimal expression (for instandé)23 ~ 120030). For consistency with multiplication, we had
better extend the notion of essential equality so that

a~b<= axcxbxc forany numbers,b,c.

(For instance, the fact thatx 6 = 12 ~ 102 = 17 x 6 implies that2 ~ 17.) Of course, we
also stipulate thai ~ b andb ~ ¢ together implya ~ ¢. Show that for any number, there is
another numbe# such thats x b ~ 1.

Solution. Consider the numbeis 11, 111, etc. Since there are only finitely many congruence
classes modula, two of these numbers must be congruent; in other wardigs a multiple of
the form11---100---0. We will show that any number of the latter form is essentiafjual
to 1; obviously we can forget about the string of zeroes.

We first prove byad hocmethods that various other numbers are essentially equaFimm
15 x 7 = 105 ~ 15 we see thal ~ 1. Then fromll x 13 ~ 7 x 11 x 13 = 1001 ~ 11
we see thal3 ~ 1. From2 ~ 2 x 7 = 14 =~ 104 = 8 x 13 we see thatt ~ 1. But also
18 x 6 = 108 =~ 18, s06 ~ 1. Thus6 ~ 4,s03 ~ 2and9 = 3 x3 ~ 2x3 =~ 1.
Similarly from 10 ~ 1 ~ 4 we get5 ~ 2 and25 ~ 1. Now5 x 5 = 25 ~ 205 = 5 x 41,
S04]1 =~ 5 ~ 2;also4 x 23 =92 ~ 902 = 2 x 41 x 11 ~ 4 x 11, s023 ~ 11. But also
23 2 9 x23=20T~ 27T~ 3~ 2,501l = 2. From9 ~ 81 ~ 801 = 9 x 89 we get89 ~ 1,
whence2 ~ 2 x 89 = 178 ~ 1078 = 2 x 11 x 49 ~ 4 x 49 =~ 1. This means that every number
mentioned in this paragraph is essentially equdl. to

We now note that

11 1a1l---1x2x41 =911---102
~ 91112 x 9 = 8200 - - - 08
~ 828 = 4 x 207 ~ 1,

as required. It seems plausible that in fact all numbersssergially equal ta.

. Letn be a positive integer. Show that the average of the nun(bms%%rl)z, (tan 5222, - - -,

2n+1
(tan 5275)* equals their product.

Solution. We will in fact prove an equality of polynomials:

s
t 2 t
(x+( an2n+1) )+ ( an2n+1

J

9 nm 2_” 2n+1\ ,
))...(x+(tan2n+1))— :0< 2 )x . (2

From this equality it follows that the sum of the numbers ia tuestion ig*"") = n(2n + 1)
(so their average i&n + 1), and their product ig*2"") = 2n + 1 also. To prove (2), let
P(z) denote the right-hand side. Nof(z) is certainly a monic polynomial of degreg and
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the factors on the left-hand side are all different becauseis increasing on0, 7). So it
suffices to show, for each < k < n, that P(—(tan 7:75)?) = 0. But if we think in terms of
polynomials with complex coefficients,

P(—:L’Q) _ ZO (2712—; 1) (ix)Q"_Zj _ i((l + ix)2"+1 _ (1 o i$)2n+1).

So it suffices to show thatl + i tan 527 )*"* = (1 — i tan 527 )*"**. This holds because

1+ itan 527 1 — (tan 527-)% 4 2i tan ;27

2n+1 2n+1 2n+1
. km km
1 —itan 575 1+ (tan 575 )?
= cos? i — sin? b + 24 sin i cos i
B 2n + 1 2n + 1 2n+1  2n+1
2k L 2k
= 7 S1n
Comr1 Mot
which is one of thé2n + 1)th complex roots of.
. Fix positive integersy, k such thatt < n — 1. A permutationa,,- - - ,a, of the numbers

1,2,---,nis called ak-shuffleif 1,2, --- , k£ occur in the correct order arid+ 1,k +2,--- ,n
occur in the correct order. For example, thehuffles ofl, 2, 3, 4 are those permutations where
1 precede® and3 precedest, namely (omitting the commasp34, 1324, 1342, 3124, 3142,

and3412. For any distinct complex numbers, - - - , z,,, show that
1
)3
ai, - an (xal - xaz)('raz - xas) e ('ranfl - xan)
ak-shuffle
Solution.  Let Si(n) be the set of alk-shuffles ofl, - - - ,n. Clearly anyk-shuffle must end

either with k& or with n; let S,(n)" and Sx(n)” be the sets ok-shuffles of these two kinds. It
suffices to show that

Z (Tay = Tay) "+ (Tap = Tay) ™"

ai,,an

€Sk (n)’

= (2 — @) (g — ) T (W — Tha2) T (Tl — @) T (1, — ) T

Z (xal - 'Tllz)_l e (',L‘anfl - xan)_l

ai, - ,an
€Sk (n)”
1

= (21 — @) (mher — ) T (Tt — Tpg2) T (B — ) (g — @) T
since the sum of the right-hand sides is clearly zero. Weeptiogse equations by induction on
n (they are trivial whem = 2). The two equations are related simply by repladingy n — &
and swapping, - - - , xx andz,q, - - - , x,, SO it suffices to prove the second onek K= n — 1,
then the only element df;(n)” is the trivial permutation, and the claim is obvious. Othisay
ap,- -+ ,a, isin Sg(n)” ifand only if a,, = n anda,,--- ,a,_1 isin Si(n — 1). Hence by the
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induction hypothesis,

Z (Tay = Tay) "+ (T, — Ta,) "

= (2, — $2)_1 o (g — $k)_1($k+1 - 56k+2)_1 e (@pg — $n—1)_1($n—1 - M)_I(M - %)_1

+ (1 — 562)_1 (T — $k)_1($k+1 - $k+2)_1 R A xn—l)_l(xk - xn—1)_1($n—1 — xn)_l-

The desired expression now follows from the identity

(1 — ) @k — 20) "+ (T — Toe1) N (@1 — 20) 7 = (Tne1 — 20) (TR — 20) 7

. Suppose we have white balls and: black balls, indistinguishable apart from their colour. We
put them in a bag to hide the colour, and then drawbaftthem + n balls, chosen at random.
For anya, let P(a; b, m,n) denote the probability that at leasof theseb balls are white. On
the assumption that andb are nonnegative integers satisfyiogs b < m +n,0 < a < m,
and0 < b — a < n, prove that

Pla+1;b,m,n) < Pla+ 1;0+1,m+1,n+1) < P(a;b,m,n).

Solution. This result is proved in the paper ‘On the comparison of tweenbed frequencies’
by M. Phipps and E. Seneta, Biometrical Journal 43 (2001)1npp. 23-43.

. Let A be the set of rational numbersuch thad < r < 1. Itis well known thatA is countable
i.e. the elements aofl can be listed-, r5, r3, - - - S0 that every element appears exactly once on
the list. Given such a listing, we define a functibpn R — R by

flay=7 2™

n>1
rn<T

a) Show that there exists a listing of for which the corresponding functiofi takes no
rational values other thahand1.
b) Show that there exists a listing dffor which f takes infinitely many rational values.

Solution.
a) Express all the elements df as fractions in lowest terms, and then list them by order of
their denominators, and by order of numerators within oniéis tre same denominator:

11213123415123456

2334455557667 TTTTT
Note that there are(q) numbers on this list with denominaterLet f be the correspond-
ing function. It is obvious thaf(z) = 0 for z < 0, and f(z) = >_ ., 27" = 1 for
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xr > 1. So assumé < z < 1, and suppose for a contradiction thfdt:) is rational. Then
the infinite binary expansion gf(z) has some initial segment and then a repeating block
of length NV (if f(z) = 35 whereged(l,2p) = 1, N is the multiplicative order of in
Z,/1Z). But by definition of f (x), thenth bit after the ‘binary point’ isl if », < x and0
otherwise. Thus for our listing, the firs{2) = 1 bit determines whethey < z; the next
®(3) = 2 bits determine Whethe}! <u and§ < z, and so on. Clearly if is prime, the
corresponding — 1 bits consist of gz | ones followed by; — 1 — | gz | zeroes. Whep is
sufficiently large both these numbers excéédcontradicting the supposed periodicity.

b) Leta; > ay > a3 > --- be any infinite decreasing sequence of irrational numbettsein
interval (0, 1) whose limit is0. ThenA is the disjoint union4d; U A, U A3 U - - -, where
A =ANn(a,1)andA; = AN (a;,a;—) forall j > 2. AlsoZ* is the disjoint union
NiUN;UN3U---,whereN; = {n € Z" |n = 27" mod27}. Itis clear that each set;
andN; is countably infinite. Hence we can define bijectigns N; — A; and put them
together to define a bijectian: Z* — A (that is, a listing as in the problem). ffis the
corresponding function, then for all integérs> 1,

fla) = > 2

n>1
q(n)€AR+1UAL U

— Z 9—n

n>1
NENE1UNpoU---

-y o
ne2kZ+
B 1
S22t 1
So the numberg(ay) constitute the required set of infinitely many rational e wf f.
9. Fix a positive integer. and letz, - - - , x,, be indeterminates. For any permutation- - - , a,
of 1,---,n, define a polynomial iy, - - - , z,:
oy o an = (Tay = Tay) (Tay +Tay = Tag ) (Tay +Tay +Tag —Tay) * (Tay +Tay +++ -+ T,y —Ta,).
Prove that each of these polynomials is a linear combinatiath integer coefficients, of the
polynomials attached to permutations wheye= 1.
Solution.  We prove this by induction on, it being trivial whenn = 1. First suppose that
1 =a;forl <j<n-—1.Inthis case we observe that
Moy an = oy any (Tay + Tay + 7+ Tapy — Tay)-

By the result fom — 1 applied to the indeterminates, z,,, - - , Zq,," - - , Za,_,, the polynomial
I, ... a,_, IS @nintegral linear combination of polynomials, ... ,, , whereby, --- . b,_;isa

sOn—1

permutation ofa; | 1 <i <n —1,i # j}. For such polynomials we have
H17b27"'7bn71<xa1 t Tay T+ Tapy — xan) = H17b27"'7bn717an7

so this gives the required linear combination. So we neeglltanridle the case whete= a,,; by
symmetry, it will suffice to show thatl, 5 ... ,, ; is an integral linear combination of polynomials
Iy 4,.... »,- This is obvious ifn = 2, so assume > 3. Now

H2,3,---,n,1 = ($2 - $3) H2,4,---,n,1‘$2l—>(£2+$37



10.
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where on the right-hand side we have a polynomial in the erd@hatescy, x4, - - - , ,,, 21, but
with z, 4+ x5 substituted forr,. By the result forn — 1 again,Il, 4 ... ,,1 is an integral linear
combination of polynomiall, , ... ., , where{cy,--- ,c,_1} = {2,4,--- ,n}, and2 = ¢; say.

Now let X be the product of all the factors in such a polynomial exegpte,, +- - -+, _, —2,
and letY denoter; + z., + - - - + z,_,. We have

($2 - $3) Hl,cQ,---,cn,l‘;ngmgﬂg = X‘$2!—>(E2+$3 ($2 - $3)(Y — T2 — $3)
= Xlepaotas (Y — 22) (Y + 29 — 23)

— Xlesaotas (Y — 23) (Y + 23 — 22)

=1, — Iy,

$9Ck—1,2,3,Ck41,"" sCn—1 ©3Ck—1,3,2,Ck41,"" ,Cn—17

which is of the required form.

Fix an integem > 2. Determine for which real numberghe following polynomial has real
roots (counting multiplicities):

n n—1 c n—2 c n—3 C
T+ cx + x + x + - F ,
2 3 n

where(°) meange=D(e=2--(ca+1)

Solution.  We will show that the set of satisfying this condition is as follows: # = 2,
it is the interval(0, 2]; if n = 3, itis the union{0} U [1,2] U {3}; if n > 4, itis the finite set
{0,1,--- . n}.

In then = 2 case, we just need to establish for whicthe quadratic:? + cx + @ has
real roots. The discriminant ig¢ — 2(c¢?> — ¢) = ¢(2 — ¢), which is nonnegative precisely when
¢ € [0,2]. From now on we assume> 3. Denote the polynomial in question ly.

Firstly, note thatit € {0, 1,--- ,n}, thenf.(x) = 2" ¢(z+1)¢, so these values afdefinitely
work. So assume that ¢ {0,1,---,n}. The key observation is the following equation of
polynomials:

c(c—l)---(c—n).

(nz —c+n)fo(z) = z(x + 1) fiz) — n!

3)
One way to prove this is by comparing™ f.(z) with the power series expansion(@f+ z~1)¢

in the variablez—!. More directly, we can simply find the coefficients of the pesvef z on
both sides of (3). Both sides have leading termi™'. The constant term on the left-hand side is
exactly the second term on the right-hand side, so conganstalso match. For< s < n—1,
the coefficient ofc”~* on the left-hand side is

o, 5 )+ e m(8) = (it 9+ cor s+ )

while the coefficient of:” ¢ on the right-hand side is

m=s=n( 5 ) +a-9(5) = 7 (D)1= 9+ -9+ 1)L

These are clearly the same.
Since we have assumed the constant term on the right-haed&i@®) is nonzero, we see
instantly thatf, and f. have no common root, i.€f. has no repeated root. By elementary
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calculus, ifzy > x5 > --- > x; are the real roots of,, we must havef/(x;) > 0, f/(x2) <0,
fi(z3) > 0, and so on. But (3) obviously implies thdand —1 are not roots off,., and within
each interval—oo, —1), (—1,0), (0, 00), the sign off’(z) is the same for all roots. We conclude
that f. has at moss roots (counting multiplicities). So fat > 4, we do not get any values of
outside{0,1,--- ,n}.

If n =3 andc ¢ {0,1,2,3} is such thatf. does have real roots, then by the above reason-
ing there must be one in each of the intervialsx, —1), (—1,0), and(0, co), and moreover
fi(x1) > 0 wherex; is the rootin(0, co). Equation (3) then implies thatc—1)(c—2)(c—3) >
0. Moreover,f!(z) = 322 + 2cz + 92 must have two real roots, so its discriminant3 — c)
is positive. We conclude that< ¢ < 2. Conversely, assume< ¢ < 2, and letu < v be the
roots of f/; we have

fg(g 1) = 3(% —1)? +20(§ 1)+ C(C; D _ ;(c— D(c—2) <0,

sou < ¢ — 1 < v. Substitutings = u in (3), we see that3u — ¢ + 3) f.(u) < 0, which means
that f.(u) > 0; similarly, f.(v) < 0. Hencef, has three real roots.



