
SUMS PROBLEM COMPETITION, 2002

SOLUTIONS

1. Let us write

xn = 99·
··
9

(n 9′s) and yn = 1010·
··
10

(n 10′s).

We claim that x10 > y9. In fact, we’ll show that xn+1 > yn for all n ≥ 1. To do this, we’ll
show that xn+1 ≥ y2

n for all n ≥ 1, which implies the desired result, because yn ≥ 10 > 1
obviously holds for all n ≥ 1. We prove that xn+1 ≥ y2

n by induction on n. If n = 1, then
xn+1 = 99 = 387420489 > 100 = y2

n. Now let n > 1 and assume that xn ≥ y2
n−1. Then

xn+1 = 9xn = exn ln(9) and y2
n =

(
10yn−1

)2 = 102yn−1 = e2yn−1 ln(10).

So what we need to prove is that xn ln(9) ≥ 2yn−1 ln(10). But the induction hypothesis
tells us that xn ≥ y2

n−1. So it is enough to show that y2
n−1 ln(9) ≥ 2yn−1 ln(10), or

equivalently, that yn−1 ≥ 2 ln(10)/ ln(9) = 2.095 · · ·. But this is clear, because yn−1 ≥ 10.

2. Consider the following diagram, and draw the indicated dotted lines:
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By Pythagoras’s Theorem we have

(r1 + r3)2 = (r3 − r1)2 + x2,

so that x2 = 4r1r3. Similarly, (r2 + r3)2 = (r3 − r2)2 + y2, so that y2 = 4r2r3. Also,

(r1 + r2)2 = (2r3 − r1 − r2)2 + (y − x)2,

from which, using x2 = 4r1r3 and y2 = 4r2r3, we obtain the equation xy = 2r2
3. From

these last three equations we get

r3 = 2
√

r1r2.
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There is a second configuration of the three circles when ` = `′:
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By Pythagoras’s Theorem again, applied to three right triangles indicated by dotted lines,
we have

x2 + (r1 − r3)2 = (r1 + r3)2

y2 + (r2 − r3)2 = (r2 + r3)2

(x + y)2 + (r2 − r1)2 = (r1 + r2)2

The first and second of these tell us that x = 2
√

r1r3 and y = 2
√

r2r3. Substituting these
into the third equation, a little algebra shows that

r3 =
r1r2(√

r1 +
√

r2

)2 or r3 =
r1r2(√

r1 −
√

r2

)2 ,

where the second possibility only occurs if r1 6= r2.

3. Given a circle C with centre O and radius R, we define the power of a point P
with respect to C to be the quantity d2 − R2, where d = |OP |. It is easy to see that if a
line through P meets C at points A and B, then |PA| |PB| = |d2 −R2|.

Now suppose that C1 and C2 are two different circles in a plane, with radii R1 and R2,
respectively. Then the locus of points P with equal power with respect to both circles is
a straight line perpendicular to the line joining the centres of C1 and C2. For we may
assume that our plane is coordinatized, and that the centre of Cj is at the point (aj , 0) of
the x-axis. The condition on the coordinates (x, y) of P is that

(x− a1)2 + y2 −R2
1 = (x− a2)2 + y2 −R2

2.

A little algebra reduces this equation to

x =
R2

1 −R2
2 − a2

1 + a2
2

2(a2 − a1)
,

the equation of a line perpendicular to the x-axis.
Notice that when the two circles C1 and C2 intersect, then the line of the previous

paragraph must pass through the points of intersection, because such points have power 0
with respect to both circles.
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We now solve the stated problem. Let D be the point on the line −−→BC through B
and C such that −−→AD is perpendicular to BC. Similarly, let E be the point on AC such
that −−→BE is perpendicular to −→

AC. Then AD and BE meet at H. Then the triangles
4AEH and 4BDH are clearly similar, and so

|HA| |HD| = |HE| |HB|. (1)

Now the circle C1 with diameter AX passes through D (as well as A and X) since ∠ADX
is a right angle. Similarly, the circle C2 with diameter BY passes through E, B and Y .
Equation (1) says that the powers of H with respect to C1 and C2 are equal. By the
observation in the previous paragraph, P and Q have the same property. So P , Q and H
are collinear, by the fact proved in the second paragraph.

4. Here is a somewhat informal solution of the somewhat informally stated problem.
The probability that the pair is relatively prime is

∏
p prime

(
1− 1

p2

)
, (1)

since 1−1/p2 is the proportion of pairs (m,n) with p not a common factor. It is well-known
that the value of this infinite product is 1/ζ(2), where ζ(z) is the Riemann zeta function.
It is also well-known that ζ(2) = π2/6 < 2. So the stated probability is 6/π2 > 1/2, and
the statement is true.

One can show that the value of the product (1) is greater than 1/2 without any
knowledge of the zeta function as follows. The first three factors in (1) multiply to

(
1− 1

4

)(
1− 1

9

)(
1− 1

25

)
=

16
25

.

The product of the remaining factors is

∏
p prime

p≥7

(
1− 1

p2

)
≥

∞∏
n=7

(
1− 1

n2

)
=

6
7
,

since the last product is a “collapsing” or “telescoping” product. Hence the value of the
product (1) greater than (16/25)(6/7) = 96/175 = 0.548 · · · > 1/2.

The question was stated rather imprecisely, because there is no uniform distribution
on the set of integers, and it is unclear what it means that the integers are picked “at
random”. To make the question more precise, let n ≥ 1 be an integer, and let P (n) be the
probability that two integers, chosen at random from {1, . . . , n}. One can show that

P (n) =
1

ζ(2)
+ O

( lnn

n

)
(see J.E. Nyman, Journal of Number Theory, (1972) pp 469–473). Hence the precise
assertion is that limn→∞ P (n) = 1/ζ(2) > 1/2.
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5. We claim that the nonzero polynomials with the property

P (X)P (−X) = P (X2) (1)

are precisely those of the form

Xm
∏
n≥1:

n odd

(Φn(X))rn , (2)

where m ≥ 0 is even and where Φn(X) be the n-th cyclotomic polynomial, and the rn’s
are nonnegative integers, only finitely many of which are nonzero. Here we define

Φn(X) = (X − α1) · · · (X − αr),

where α1, . . . , αr are the primitive n-th roots of unity, that is, the complex numbers α
which satisfy αn = 1, but αk 6= 1 if 1 ≤ k < n. It is easy to see that the αr’s are just the
numbers

e2πij/n, where 1 ≤ j < n and gcd(j, n) = 1.

For example, Φ1(X) = X − 1, Φ2(X) = X + 1, and

Φ3(X) = (X − e2πi/3)(X − e4πi/3) = X2 + X + 1.

It is well-known that Φn(X) has integer coefficients, and is irreducible over the rationals.
The degree of Φn(X), denoted r above, is ϕ(n), the number of integers j satisfying 1 ≤
j < n and gcd(j, n) = 1.

Let us first show that if n is odd, then P (X) = Φn(X) has property (1).
Step 1: The degree ϕ(n) of Φn(X) is even. For if n = pm1

1 · · · pmr
r is the prime

decomposition of n, then the pi’s are odd. Since ϕ(pm) = pm−1(p− 1) and

ϕ(n) = ϕ(pm1
1 ) · · ·ϕ(pmr

r ),

we see that ϕ(n) is even.
Step 2: If α1, . . . , αr are the distinct primitive n-th roots of 1, then α2

1, . . . , α
2
r are also

these roots, in some order. For if α = e2πij/n where gcd(j, n) = 1, then α2 = e2πi(2j)/n,
and gcd(2j, n) = 1. If α2

j = α2
k, say, then αj = αk or αj = −αk. The latter possibility

cannot happen, as then 1 = αn
j = (−αk)n = (−1)n = −1. So the numbers α2

1, . . . , α
2
r are

distinct, and so they are the distinct primitive n-th roots of 1.
Step 3: If P (X) = Φn(X), n odd, then by Steps 1 and 2,

P (X)P (−X) =
r∏

j=1

(X−αj)
r∏

j=1

(−X−αj) = (−1)r
r∏

j=1

(X2−α2
j ) =

r∏
j=1

(X2−αj) = P (X2).

Now we are ready to prove our claim that all polynomials P (X) with property (1) have the
form (2). It is clear that Xm has the property (1) if m is even. Also, if P (X) and Q(X)
satisfy (1), then so does P (X)Q(X). It follows that any polynomial of the form (2) has
property (1).
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Conversely, if P (X) has property (1), we show that P (X) has the form (2) by induction
on the degree of P (X). If this degree is zero, then P (X) is a constant c, say, and c2 = c,
so that c = 1 (as we are assuming that P (X) is not the zero polynomial). Thus P (X) has
the form (2), with m = 0 and all the rn’s equal to 0.

Now suppose that P (X) is nonconstant, and let α be a complex root of P (X). Then
P (α2) = P (α)P (−α) = 0, so that α2 is a root too. Repeating this, we see that

α, α2, α4, . . .

are all roots of P (X). But polynomials only have finitely many roots, and so there must
be 1 ≤ j < k so that α2j

= α2k

. Hence

(α2j

)2
k−j−1 = 1.

Let β = α2j

. Then β is a root of P (X) and βn = 1 for some odd number n, namely
n = 2k−j − 1. Let n be the smallest positive odd integer such that βn = 1. Then β is
a primitive n-th root of 1. For if there is a k such that 1 ≤ k < n and βk = 1, then
βn−k = 1 too. As either k or n − k is odd, and both are less than n, we would have a
contradiction to the definition of n. So β is a root of Φn(X). Since Φn(X) is irreducible
over the rationals, it is the minimal polynomial of β and so Φn(X) divides P (X). Writing
P (X) = Φn(X)Q(X), it is easy to check that Q(X) satisfies property (1), and so, by
induction, Q(X) has the form (2). Thus P (X) has the form (2), with one more copy
of Φn(X) than Q(X) has.

6. We show more generally that if we have n squares S1, . . . , Sn of side lengths
x1 ≥ · · · ≥ xn, respectively, and if

n∑
j=1

x2
j ≥ ab + (a + b)x1,

then the squares can cover a rectangle of size a × b, where a ≤ b, say. This is done by
induction on n. If n = 1, then x2

1 ≥ ab + (a + b)x1 shows that (x1 − a)(x1 − b) ≥ 2ab > 0
and so x1 > b and the statement is obvious.

Suppose that n > 1 and that the result has been proved for any rectangle and for
any smaller n. Imagine a rectangle R of base b and height a. Let j be the smallest index
such that x1 + x2 + · · ·+ xj > a. Imagine the j squares S1, . . . , Sj stacked on top of each
other, with their left sides on the left side of R. The part of R not covered by S1, . . . , Sj

is contained in a rectangle R′ of size (b − xj) × a. We claim that the remaining squares
Sj+1, . . . , Sn cover R′. By the induction hypothesis, it is enough to show that

n∑
i=j+1

x2
i ≥ a(b− xj) + (a + b− xj)xj+1.

To see this, note that

x2
1 + · · ·+ x2

j−1 ≤ (x1 + · · ·+ xj−1)x1 ≤ ax1,
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so by our hypothesis,
n∑

i=j+1

x2
i =

n∑
i=1

x2
i − x2

j −
j−1∑
i=1

x2
i ≥ ab + (a + b)x1 − x2

j − ax1

= ab + bx1 − x2
j

≥ ab + bxj − x2
j

= a(b− xj) + (a + b− xj)xj

≥ a(b− xj) + (a + b− xj)xj+1.

7. A simple induction shows that for x ≥ 0 and n = 1, 2, . . .,

ϕ(x + n) = ϕ(x) +
1

x + 1
+ · · ·+ 1

x + n
,

and so in particular

ϕ(n) =
1
1

+ · · ·+ 1
n

.

Next we show that ϕ(x) is an increasing function. For if 0 ≤ x < y, choose an integer
n ≥ 1 so that y < x + n. Then y is between x and x + n, and so y = tx + (1 − t)(x + n)
for some t ∈ (0, 1). Thus

ϕ(y) ≥ tϕ(x) + (1− t)ϕ(x + n)

= tϕ(x) + (1− t)
(
ϕ(x) +

1
x + 1

+ · · ·+ 1
x + n

)
= ϕ(x) + (1− t)

( 1
x + 1

+ · · ·+ 1
x + n

)
> ϕ(x).

We make no further use of the convexity of ϕ. For n = 0, 1, . . ., let

In =
∫ n+1

n

ϕ(x) dx and Jn =
∫ n+1

n

xϕ(x) dx

We need to evaluate I0 and J0. Now

In+1 =
∫ n+2

n+1

ϕ(x) dx =
∫ n+1

n

ϕ(x + 1) dx =
∫ n+1

n

(
ϕ(x) +

1
x + 1

)
dx

= In + ln(n + 2)− ln(n + 1).

A simple induction now shows that In = I0 + ln(n + 1) for all n. Also, since ϕ(x) is
increasing, we have

ϕ(n) =
∫ n+1

n

ϕ(n) dx ≤
∫ n+1

n

ϕ(x) dx ≤
∫ n+1

n

ϕ(n + 1) dx = ϕ(n + 1).

Subtracting ln(n + 1) throughout, we see that I0 = In − ln(n + 1) satisfies

ϕ(n)− ln(n + 1) ≤ I0 ≤ ϕ(n + 1)− ln(n + 1). (1)

But it is well-known that ϕ(n) − ln(n) → γ as n → ∞, and since ln(n + 1) − ln(n) =
ln(1 + 1/n) → 0, it follows that both left and right extremes of (1) tend to γ as n → ∞.
Thus I0 = γ.
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To evaluate J0, start by observing that

Jn+1 =
∫ n+2

n+1

xϕ(x) dx =
∫ n+1

n

(x + 1)ϕ(x + 1) dx =
∫ n+1

n

(x + 1)
(
ϕ(x) +

1
x + 1

)
dx

= Jn + In + 1.

Using In = I0 + ln(n + 1) = γ + ln(n + 1), a simple induction shows that

Jn = J0 + nγ + n + ln(n!) for n = 0, 1, . . . (2)

But

Jn =
∫ n+1

n

xϕ(x) dx =
∫ n+1

n

(x− n)ϕ(x) dx + nIn,

and, since ϕ(x) is increasing,

1
2
ϕ(n) = ϕ(n)

∫ n+1

n

(x− n) dx ≤
∫ n+1

n

(x− n)ϕ(x) dx ≤ ϕ(n + 1)
∫ n+1

n

(x− n) dx

=
1
2
ϕ(n + 1)

=
1
2
(
ϕ(n) +

1
n + 1

)
.

Thus
1
2
ϕ(n) + nIn ≤ Jn ≤

1
2
ϕ(n) + nIn +

1
2(n + 1)

,

so that Jn = 1
2ϕ(n) + nIn + en for some en which tends to 0 as n →∞. So

Jn =
1
2
ϕ(n) + n

(
γ + ln(n + 1)

)
+ en =

1
2
ϕ(n) + n

(
γ + ln(n)

)
+ 1 + e′n, (3)

where e′n → 0 as n →∞.
By Stirling’s Formula, we can write

ln(n!) =
1
2

ln(2π)− n +
(
n +

1
2
)
ln(n) + e′′n,

where e′′n also tends to 0 as n →∞. Combining this with (2) and (3), we get

J0 =
(1

2
ϕ(n) + n

(
γ + ln(n)

)
+ 1 + e′n

)
−

(
nγ + n +

1
2

ln(2π)− n +
(
n +

1
2
)
ln(n) + e′′n

)
=

1
2
(
ϕ(n)− ln(n)

)
+ 1− 1

2
ln(2π) + e′n − e′′n

→ γ

2
+ 1− 1

2
ln(2π) as n →∞.

Hence
J0 =

γ

2
+ 1− 1

2
ln(2π).
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8. (i) An example of face transitive polygon which is not vertex transitive is a “dipyra-
mid” X, obtained from taking two pyramids whoses bases are regular n-gons, n 6= 4, and
joining them at their bases. The faces are all isosceles triangles of the same size, and so
either a rotation about the axes joining the top and bottom vertices, T and B, say, or a
reflection in the joined bases of the pyramids, followed by such a rotation, maps any face
to any other. So X is face transitive. But it is not vertex transitive, because the valency
(number of neighbouring vertices) of both T and B is n, but the valency of all the vertices
on the common base is 4, and so no symmetry could send T or B to one of these latter
vertices.

(ii) We can make a “prism” by taking two regular n-gons, one above the other, and
joining corresponding vertices by vertical edges. Then this polyhedron is vertex transitive,
but if n 6= 4, it is not face transitive, because two of its faces have n sides, while the others
have 4 sides.

(iii) Consider a (non-regular) tetrahedron X in which opposite sides have the same
length. So two opposite sides have length a, say, two have length b, and two have length c.
Then each face is a triangle having one side of each of the lengths a, b and c. If a, b and c
are not all equal, then X cannot be edge-transitive. On the other hand, X is both vertex-
and face-transitive. A concrete realization of such a tetrahedron is as follows: take the
vertices A = (−1, 0, 1), B = (−1, 0,−1), C = (1, 1, 0) and D = (1,−1, 0) in R3. Here we
have |AB| = |CD| = 2, and the other four edge lengths equal to

√
6. Using the linear

transformations given by the matrices

T1 =

 1 0 0
0 1 0
0 0 −1

 , T2 =

 1 0 0
0 −1 0
0 0 1

 and T1 =

−1 0 0
0 0 1
0 1 0

 ,

we can easily see that X is both vertex and face transitive.
(iv) Let X be a polyhedron, with vertex, edge and face sets V, E and F , respectively. Let
G be the group of symmetries of X. We assume that X is edge-transitive, but not vertex-
or face-transitive.

Step 1. Pick any edge e, with vertices v1 and v2. We first show that any vertex v is
in the G-orbit of v1 or of v2, but not both. To see this, let d be an edge containing v, and
let w be the other vertex of d. By edge-transitivity, there is a g ∈ G which maps e to d.
So g{v1, v2} = {v, w}. So v = gv1 or v = gv2, and v is either in the G-orbit of v1 or of v2.

Suppose that v is in both the G orbit of v1 and of v2. Write v = g1v1 and v = g2v2.
Since X is not vertex transitive, there is a vertex v′ which is not in the G-orbit of v1. Let
e′ be an edge containing v′ and let w′ be the other vertex of e′. Let g′ ∈ G map e to e′.
Then g{v1, v2} = {v′, w′}, and since gv1 cannot equal v′, we must have gv2 = v′. But then
v′ = gv2 = gg−1

2 v1 is in the G-orbit of v1, contrary to hypothesis.
Because of Step 1, the vertex set V is the disjoint union V1 ∪ V2, where Vj is the

G-orbit of vj . Since the edge e we started with was arbitrary, we see that any edge has
one vertex in V1 and one vertex in V2. Moreover, if v is any vertex, in V1 say, then all the
vertices joined to v by an edge must be in V2. Let mv denoted the number of such vertices
(the valency of v). Then mv = mw if v and w are in the same G-orbit. Let mj be the
common valency of the vertices in Vj . Since each edge e contains exactly one vertex in V1,
we have

E =
⋃

v∈V1

{e : v is a vertex of e},
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and therefore |E| = |V1|m1. Similarly, |E| = |V2|m2.
Another consequence of Step 1 is that each face F must have an even number of edges.

For if we start at some vertex v of F and start working round the edges of F , the vertices
must alternatingly be in V1 and in V2, and so we must take an even number of steps to
get back to v.

Step 2. Let F1 and F2 be two adjacent faces of X, and let e be their common edge.
Then any face F of X is in the G-orbit of F1 or of F2, but not both.

One proves Step 2 in exactly the same was as Step 1. Corresponding consequences of
Step 2 are that F is the disjoint union F1 ∪ F2 of the G-orbits of F1 and of F2, that any
two adjacent faces are in different sets Fj , and that |E| = |F1|n1 = |F2|n2, where nj is
the number of edges on any face belonging to Fj . We saw as a consequence of Step 1 that
n1 and n2 are even. In the same way, we see from Step 2 that the valencies m1 and m2

are both even.
By definition of a vertex, the valency of any vertex must be at least 3, and so being

even, each mj is at least 4. Similarly, each nj is at least 4. Hence

|V| = |V1|+ |V2| =
|E|
n1

+
|E|
n2

≤ |E|
4

+
|E|
4

=
|E|
2

.

Similarly, |F| ≤ |E|/2. Hence by Euler’s Formula,

2 = |V| − |E|+ |F| ≤ |E|
2
− |E|+ |E|

2
= 0,

a contradiction.

9. Suppose that n is even. Then

1 = (−1)n = (1− 2)n =
n∑

k=0

(
n

k

)
(−2)k,

so that, subtracting 1 from both sides and dividing by n, we get

n∑
k=1

1
n

(
n

k

)
(−2)k = 0. (1)

Now

1
n

(
n

k

)
=

(n− 1) · · · (n− (k − 1))
k!

=
(−1)k−1(k − 1)! + nmn,k

k!
=

(−1)k−1

k
+ n

mn,k

k!
.

for some integer mn,k. Hence (1) can be written

n∑
k=1

2k

k
= n

n∑
k=1

mn,k(−1)k2k

k!
. (2)

The 2-adic valuation ord2(r) of a nonzero rational number r is by definition v (∈ Z) if
r = 2va/b, where a, b ∈ Z are odd integers. In other words, ord2(r) is the number of times
r is divisible by 2, counting negatively for factors of 2 in the denominator.

9



The formula

ord2(n!) =
∞∑

j=1

⌊ n

2j

⌋
(3)

is well-known (see Niven and Zuckerman, An Introduction to the Theory of Numbers,
Theorem 4.2, for example). Since ⌊ n

2j

⌋
≤ n

2j
,

we see that ord2(n!) ≤ n. So the terms 2k/k! appearing on the right in (2) have 2-
adic valuation at least 0. That is, they are rational numbers which may be expressed as
fractions with odd denominators. So the same is true for the sum on the right in (2).
Hence xn = nrn, where ord2(rn) ≥ 0. Thus

ord2(xn) ≥ ord2(n) if n is even.

In particular, ord2(x2k) ≥ k. It follows easily from this that ord2(xn) →∞ as n →∞.

The estimate ord2(x2k) ≥ k is very weak. Here is another solution to the problem
which gives a better estimate.

Solution 2. We first derive the formula

xn =
2n

n

n−1∑
k=0

1(
n−1

k

) . (4)

Replacing n by n + 1 and multiplying both sides by n!, this is equivalent to showing that

n∑
k=0

(n− k)!k! = (n + 1)!
n∑

k=0

1
(k + 1)2n−k

. (5)

We leave it to the reader to verify that both sides of (5) satisfy the recurrence relation

yn+1 =
n + 2

2
yn + (n + 1)!.

Since both sides of (5) are equal to 1 when n = 0, the identity (5), and therefore (4), holds
for all n ≥ 0.

We use (3) to estimate the 2-adic valuation of the denominators on the right in (4).
Indeed,

ord2

((
n− 1

k

))
=

∞∑
j=1

(⌊n− 1
2j

⌋
−

⌊ k

2j

⌋
−

⌊n− 1− k

2j

⌋)
. (6)

If we write r = (n− 1)/2j and

m =
⌊ k

2j

⌋
+

⌊n− 1− k

2j

⌋
,

then
m ≤ k

2j
+

n− 1− k

2j
= r,

10



so that m ≤ brc. Hence the summands on the right in (6) are non-negative. Also,⌊ k

2j

⌋
>

k

2j
− 1 and

⌊n− 1− k

2j

⌋
>

n− 1− k

2j
− 1,

so that m > r−2. Hence m ≤ brc ≤ r < m+2. Hence 0 ≤ brc−m < 2. Since brc−m ∈ Z,
it must be 0 or 1. That is, the j-th summand on the right in (6) is 0 or 1. Now suppose
that 2r ≤ n − 1 < 2r+1. Then the j-th term in (6) is zero once j ≥ r + 1. So the sum
in (6) is a sum of r terms, each of which is 0 or 1. Hence

ord2

((
n− 1

k

))
≤ r if 2r + 1 ≤ n ≤ 2r+1.

So we may write the formula (4) as

xn =
2n−r

n + 1

n−1∑
k=0

2r(
n−1

k

)
and each summand in the sum on the right has non-negative 2-adic valuation. When n is
even, so that n + 1 is odd, we therefore have shown that

ord2(xn) ≥ n− r if 2r + 2 ≤ n ≤ 2r+1 is even.

In particular, we have
ord2(x2k) ≥ 2k − k + 1.

10. For general n, this problem was rather harder than SUMS thought. Sorry about that.
We refer the interested reader to an article by N. Bergeron and A.M. Garsia “On certain
spaces of harmonic polynomials”, Contemporary Mathematics Volume 138 (1992), pp. 51–
86. We shall give here a complete solution for the case of the Van der Monde determinant
in 3 variables, but only part of the solution for the case of general n, giving the main ideas
at least.

Fix an integer n ≥ 2 and let x1, x2, . . . , xn be indeterminates. Let

Vn =

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

...
...

. . .
...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣
be the Vandermonde determinant. Using row and column operations it is easy to check
that

Vn = (xn − x1)(xn − x2) . . . (xn − xn−1)Vn−1, (1)

and then a simple induction leads to the well known formula

Vn =
∏

1≤i<j≤n

(xj − xi). (2)

11



Note that Vn−1 is a polynomial in the variables x1, x2, . . . , xn−1; in particular, Vn−1 does
not depend on xn.

For convenience, let ∂i = ∂
∂xi

, and more generally, ∂k
i = ∂k

∂xk
i

, for i = 1, 2, . . . , n and
k ≥ 0. It is well known that for all i and j, ∂i∂jF = ∂j∂iF for any reasonable function F of
x1, . . . , xn, and in particular this is true for any polynomial in the xk’s, which is all we are
dealing with here. So any function obtained from Vn by repeated partial differentiations,
in any order, can be written as

∂k1
1 ∂k2

2 . . . ∂kn
n Vn, where k1, k2, . . . , kn ≥ 0. (3)

In fact, we can also assume that 0 ≤ kj < n, for all j. For (2) shows that for any j, Vn

is a polynomial of degree n − 1 in xj . Hence ∂n
i Vn = 0. There are therefore at most nn

nonzero partial derivatives (3).
We want to show that these partial derivatives span a vector space of functions which

has dimension n!. We would like to show that any partial derivative (3) is a unique linear
combination of partial derivatives

∂k1
1 ∂k2

2 . . . ∂kn
n Vn, where 0 ≤ kj < j for each j. (4)

There are n! such partial derivatives. For example, if n = 2 then V2 =
∣∣ 1 1
x1 x2

∣∣ = x2−x1;

so the only nonzero partial derivatives are

V2 = ∂0
1∂0

2V2, 1 = ∂0
1∂1

2V2, and − 1 = ∂1
1∂0

2V2.

The third of these is −1 times the second one, and so a linear combination of the first two,
which are the ones of the form (4).

Now suppose that n = 3. Let us write simply ∂ijk in place of ∂i
1∂

j
2∂

k
3V3. Then the

3! = 6 partial derivatives (4) are

∂000 = V3, ∂001 = (x1 − x2)(x1 + x2 − 2x3), ∂002 = −2(x1 − x2),
∂010 = −(x1 − x3)(x1 + x3 − 2x2), ∂011 = −2(x2 − x3) and ∂012 = 2.

All 27 ∂ijk’s, 0 ≤ i, j, k ≤ 2, are linear combinations of these 6 partial derivatives. Indeed,

∂020 = 2(x1 − x3) = −∂011 − ∂002, ∂021 = −2 = −∂012, ∂100 = −∂010 − ∂001

∂101 = −∂011 − ∂002, ∂102 = −∂012, ∂110 = ∂002, ∂120 = ∂012,

∂200 = ∂011, ∂201 = ∂012, ∂210 = −∂012

and the other partial derivatives ∂ijk are all zero.

We now show that, for each n ≥ 2, the partial derivatives (4) are linearly independent.
We prove this by induction on n. We have already checked this when n = 2, so assume
now that n > 2 and that the claim holds for Vn−1. Let 0 ≤ kj < j for j = 1, . . . , n and
write k in place of kn and write

∂k1
1 ∂k2

2 . . . ∂
kn−1
n−1 = ∂k′

12



Then since Vn−1 is independent of xn,

∂k1
1 ∂k2

2 . . . ∂kn
n Vn = ∂k′∂k

n(Vn) = ∂k′∂k
n

(
Vn−1

n−1∏
j=1

(xn − xj)
)

= ∂k′
(

Vn−1 ∂k
n

n−1∏
j=1

(xn − xj)
)

= ∂k′
(
Vn−1pk

)
, say.

Notice that pk is a polynomial in x1, . . . , xn which is of degree n − 1 − k in xn. Now by
repeated use of the product rule for differentiation (in the various variables x1, . . . , xn−1),
we have

∂k′
(
Vn−1pk

)
= pk∂k′

(
Vn−1

)
+ terms of degree < n− 1− k in xn. (5)

Suppose that we have an equation∑
tk1,...,kn ∂k1

1 ∂k2
2 . . . ∂kn

n Vn ≡ 0, (6)

where the sum is over all n-tuples of kj ’s such that 0 ≤ kj < j for each j, and where the
tk1,...,kn ’s are constants.

The left hand side of (6) is a polynomial in the xj ’s. Consider the terms which are
of degree n − 1 in xn. From (5) we see that the only way to get such a term in (6) is by
taking kn = 0, and that these terms are

p0

∑
tk1,...,kn−1,0 ∂k1

1 ∂k2
2 . . . ∂

kn−1
n−1 Vn−1,

where p0 =
∏n−1

j=1 (xn − xj). The coefficient of xn−1
n in (6) is therefore∑

tk1,...,kn−1,0 ∂k1
1 ∂k2

2 . . . ∂
kn−1
n−1 Vn−1,

By the induction hypothesis, this implies that the coefficients tk1,...,kn−1,0 are all zero.
Next we look at the terms of degree n− 2 in xn. Since all the coefficients tk1,...,kn−1,0

are zero, from (5) we see that the only way of getting such terms is from terms in (6) in
which kn = 1, and that these terms are

p1

∑
tk1,...,kn−1,1∂

k1
1 ∂k2

2 . . . ∂
kn−1
n−1 Vn−1,

where p1 = ∂np0 = (n − 1)xn−2
n + terms of lower degree in xn. The coefficient of xn−2

n

in (6) is therefore
(n− 1)

∑
tk1,...,kn−1,1∂

k1
1 ∂k2

2 . . . ∂
kn−1
n−1 Vn−1,

By the induction hypothesis again, this implies that the coefficients tk1,...,kn−1,1 are all
zero. Continuing in this way we see that all the coefficients tk1,...,kn−1,kn

are zero, and
linear independence is proved.
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The proof that every partial derivative (3) is a linear combination of the partial deriva-
tives (4) has been given above for n = 2, 3. For general n, we refer the reader to the paper
cited above, but at least we indicate the ideas involved here:

We first show that

n∑
j=1

∂jVn = 0,
n∑

j=1

∂2
j Vn = 0, etc, (7)

and more generally, that
P (∂1, . . . , ∂n)Vn = 0

for any symmetric polynomial P in n variables with zero constant term. The reason for
this is that Vn is an alternating polynomial in x1, . . . , xn (that is, if you interchange two of
the variables in Vn, you get −Vn). For a symmetric P it is easy to see that P (∂1, . . . , ∂n)Vn

is also alternating. But alternating polynomials are all divisible by each xi − xj , i 6= j,
and hence by Vn. The hypothesis that P has no constant term means that the degree of
P (∂1, . . . , ∂n)Vn is less than that of Vn, and so the only way it can be divisible by Vn is if
it is zero.

Now we use the first of the relations (7):

∂1Vn = −(∂2 + · · ·+ ∂n)Vn,

to express any partial derivative (3) without using ∂1. This also tells us that

∂2
1Vn = −(∂2 + · · ·+ ∂n)2Vn = ∂2

2Vn +
n∑

k=3

∂2∂kVn +
n∑

j,k=3

∂j∂kVn.

Using this and the second of the relations (7):

∂2
1Vn + ∂2

2Vn + · · ·+ ∂2
nVn = 0,

we see that

∂2
2Vn = −1

2

( n∑
k=3

∂2∂kVn +
n∑

k=3

∂2
kVn +

n∑
j,k=3

∂j∂kVn

)
,

which expresses ∂2
2Vn in terms of partial derivatives (3) in which there are no ∂1’s, and ∂2

only appears to the first power. To see how to continue this procedure, we refer the reader
to the paper cited above (equation (3.11)).
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