
SUMS PROBLEM COMPETITION, 2001

SOLUTIONS

1. Suppose that after n visits to Aunt Joylene (and therefore also n visits to Uncle Bruce)
Linda has tn ten cent pieces and dn dollar coins. After a visit to Uncle Bruce she has 2dn

twenty cent pieces and tn + dn fifty cent pieces. So after her next visit to Aunt Joylene
she has 2(tn + dn) ten cent pieces and 2dn + (tn + dn) dollar coins. Thus

tn+1 = 2tn + 2dn

dn+1 = tn + 3dn.

Hence
tn+2 = 2tn+1 + 2dn+1

= 2tn+1 + 2(tn + 3dn)
= 2tn+1 + 2tn + 3(tn+1 − 2tn),

so that
tn+2 − 5tn+1 + 4tn = 0. (1)

This is a second order linear recurrence equation with constant coefficients. The solution
is found by first solving the auxiliary equation λ2 − 5λ + 4 = 0. The roots are λ1 = 4 and
λ2 = 1. Then the general solution to the recurrence relation (1) is

Aλn
1 + Bλn

2 = A 4n + B. (2)

We are told that t0 = 0 and that d0 = 1. Hence t1 = 2t0 + 2d0 = 2. Using t0 = 0 and
t1 = 2, we quickly find that the constants A and B are 2/3 and −2/3, respectively. So

tn =
(2

3

)
4n − 2

3
.

Similarly, the dn satisfy the recurrence relation dn+2 − 5dn+1 + 4dn = 0, and dn is given
by a formula (2). Since d0 = 1 and d1 = t0 + 3d0 = 3, we quickly find that A = 2/3 and
B = 1/3 this time. Hence

dn =
(2

3

)
4n +

1
3
.

Hence after n visits to Aunt Joylene, Linda has

dn +
1
10

tn =
(11

15

)
4n +

4
15

dollars.

2. We consider more generally the case of n ≥ 3 delegates sitting around a round table,
each putting their document on their own seat and that of their two immediate neighbours.
There are 3n different ways for the thief to steal the documents, corresponding to the three
choices he has at each seat. So the probability of obtaining a complete set is Nn/3n, where
Nn is the number of ways of stealing them which result in a complete set.

We shall show that Nn = Fn+1 + Fn−1 + 2, where Fn is the n-th Fibonacci number,
defined by F1 = 1, F2 = 1, and Fn+2 = Fn+1 + Fn for n ≥ 1, so that F3 = 2, F4 = 3, etc.
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In the particular case n = 12 this gives N12 = F13 + F11 + 2 = 233 + 89 + 2 = 324, so that
the probability of getting a complete set is

324
312

=
4
38

=
4

6561
.

Let us label the seats 0, . . . , n− 1. Then on seat i, we have documents i− 1, i and i + 1,
these expressions being understood modulo n. Thus in front of seat 0 we have documents
n, 0 and 1; in front of seat 1 we have documents 0, 1 and 2, etc, until in front of seat n− 1
we have documents n− 2, n− 1 and 0.

The key to deriving the above formula for Nn is the following observation:
Suppose that the thief takes document i−1 from seat i and he takes document i from

seat i + 1. Then he must take document i + 1 from seat i + 2, since otherwise he would
miss that document. Continuing clockwise around the table, we see that he must take
document j − 1 from seat j for every j.

Seat number : · · · i− 1 i i + 1 i + 2 · · ·
· · · i− 2 i− 1 i i + 1 · · ·
· · · i− 1 i i + 1 i + 2 · · ·
· · · i i + 1 i + 2 i + 3 · · ·

Similarly, if the thief takes document i + 1 from seat i and he takes document i + 2 from
seat i + 1. Then he must take document i from seat i − 1. Continuing anti-clockwise
around the table, we see that he must take document j + 1 from seat j for every j.

If the thief takes document j−1 from seat j for every j, or if he takes document j +1
from seat j for every j, then we shall say that he has committed a special theft.

When a thief steals the documents, let us write f(i) = j if he steals document j from
seat i. Then

f : {0, . . . , n− 1} → {0, . . . , n− 1} (1)

is a function. To say that he gets a complete set is to say that f is surjective. Since
the domain and codomain are of the same size, this is equivalent to f being injective,
or to f being a bijection. So the number Nn is the number of bijections (1) such that
f(i) ∈ {i− 1, i, i + 1} for all i. We call the bijections f(i) ≡ i− 1 and f(i) ≡ i + 1 special.

Let N ′
n denote the number of non-special bijections (1) such that f(i) ∈ {i−1, i, i+1}

for all i. Given such a bijection, let

Sf = {i ∈ {0, . . . , n− 1} : f(i) = i + 1}.

If i ∈ Sf , then f(i + 1) cannot equal i + 1 since f is injective, and it cannot equal i + 2,
since otherwise f would be special by the key observation above. Hence f(i+1) must be i.
In particular, i + 1 6∈ Sf . For the same reasons, if i− 1 ∈ Sf , then f(i) must be i− 1.

If neither i nor i− 1 is in Sf , then f(i) must be i. For f(i) = i− 1 would imply that
f(i+1) 6= i by the above key observation, and so i− 1 6∈ Sf , i.e., f(i− 1) 6= i, then implies
that document i would be missed.

Conversely, suppose that S ⊂ {0, . . . , n− 1} has the property that

i ∈ S ⇒ i + 1 6∈ S. (2)
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Define fS : {0, . . . , n− 1} → {0, . . . , n− 1} by setting

fS(i) =

{
i + 1 if i ∈ S,
i− 1 if i− 1 ∈ S,
i if i, i− 1 6∈ S.

Then f = fS is a non-special bijection (1), and S = {i : fS(i) = i+1}. This shows that the
set of non-special bijections (1) are in one to one correspondence with the set of subsets
S ⊂ {0, . . . , n− 1} having property (2). Hence N ′

n is the number of such subsets.
Another way of expressing property (2) is to say that S contains none of the subsets

{0, 1}, {1, 2}, . . . , {n− 2, n− 1}, {n− 1, 0}.
To evaluate N ′

n, it is convenient to express N ′
n in terms of the number Am of subsets

S of {1, . . . ,m} such that

i ∈ S ⇒ i + 1 6∈ S for i = 1, . . . ,m− 1. (3m)

Note that we are not using arithmetic modulo n (or modulo m) here. Let us show that
Am = Am−1 + Am−2 for all m ≥ 3. For let S be a subset of {1, . . . ,m} satisfying (3m). If
m ∈ S, then m−1 cannot be in S, and so S = S′∪{m}, where S′ ⊂ {1, . . . ,m−2} satisfies
(3m−2). On the other hand, if m 6∈ S, then S is a subset of {1, . . . ,m−1} satisfying (3m−1).
The set of subsets S of {1, . . . ,m} satisfying (3m) is therefore the union of two disjoint
subsets, one with Am−2 elements, the other with Am−1. Hence Am = Am−1 + Am−2 for
all m ≥ 3.

Notice that A1 = 2 = F3 (the subsets being ∅ and {0}) and A2 = 3 = F4 (the subsets
being ∅, {0} and {1}). It follows by induction that Am = Fm+2 for m = 1, 2, . . ..

We now relate the numbers Am to what we really want: N ′
n. If S ⊂ {0, . . . , n− 1} has

the property (2) (which is understood using arithmetic modulo n), then either n− 1 ∈ S
or n− 1 6∈ S. If n− 1 ∈ S, then 0 6∈ S and also n− 2 6∈ S. Hence S′ = S \ {n− 1} must
be a subset of {1, . . . , n − 3}, and it must satisfy (3n−3). There are An−3 = Fn−1 such
subsets. If n− 1 6∈ S, then S is a subset of {0, . . . , n− 2} so that S + 1 = {i + 1 : i ∈ S} is
a subset of {1, . . . , n− 1} satisfying (3n−1). There are An−1 = Fn+1 such subsets. The set
of subsets S of {0, . . . , n − 1} satisfying (2) is therefore the union of two disjoint subsets,
one with Fn−1 elements, the other with Fn+1. Hence N ′

n = Fn+1 + Fn−1 for all n ≥ 2.
Thus Nn = N ′

n + 2 = Fn+1 + Fn−1 + 2. for all n ≥ 2.

3. Solution 1. We may assume our space has coordinate axes so that the origin is one
corner of the larger box B′, and that B′ lies in the first octant. Hence B′ is bounded by
the 6 planes x = 0, x = `′, y = 0, y = h′, z = 0 and z = b′. Now suppose that P is one
corner of the smaller box, with coordinate vector p = (px, py, pz). Let p + u, p + v and
p + w be the coordinate vectors of the vertices of B which are joined by an edge to P .
Suppose that u has coordinates (ux, uy, uz), and similarly for v and w. Notice that some
or all of ux, uy and uz might be negative (several entries were not correct because they
didn’t consider this possibility). The length, breadth and height of B are the lengths of
the vectors u, v and w (in that order, say):

` = ‖u‖ =
√

u2
x + u2

y + u2
z, b = ‖v‖ =

√
v2

x + v2
y + v2

z and h = ‖w‖ =
√

w2
x + w2

y + w2
z

By the triangle inequality,

` = ‖u‖ = ‖(ux, 0, 0) + (0, uy, 0) + (0, 0, uz)‖ ≤ ‖(ux, 0, 0)‖+ ‖(0, uy, 0)‖+ ‖(0, 0, uz)‖
= |ux|+ |uy|+ |uz|.
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Similarly,
b ≤ |vx|+ |vy|+ |vz| and h ≤ |wx|+ |wy|+ |wz|.

The four vertices of B which are not joined by an edge to P have coordinate vectors
p + u + v, p + u + w, p + v + w and p + u + v + w.

Let us show that
|ux|+ |vx|+ |wx| ≤ `′. (1)

To see this, project the 8 vertices of B onto the x-axis. In other words, look at the eight
numbers

px, px + ux, px + vx, px + wx,

px + ux + vx, px + ux + wx, px + vx + wx, px + ux + vx + wx.

These must all be between 0 and `′, because B ⊂ B′ implies that all points of B are
between the two planes x = 0 and x = `′. So the difference between any two of them must
be in modulus at most `′. For example,

|(px + ux + vx)− (px + wx)| = |ux + vx − wx|

must be at most `′. There are 8 possible choices of the signs of ux, vx and wx. If all are
≥ 0 or all are ≤ 0, then (1) holds because

|ux|+ |vx|+ |wx| = |ux + vx + wx| = |(px + ux + vx + wx)− px| ≤ `′.

If two of ux, vx and wx are ≥ 0 and one is ≤ 0, say ux, vx ≥ 0 and wx ≤ 0, then (1) holds
because

|ux|+ |vx|+ |wx| = ux + vx + (−wx) ≤ |ux + vx −wx| = |(px + ux + vx)− (px + wx)| ≤ `′,

as observed above. Similarly if one of ux, uy and uz is ≥ 0 and two are ≤ 0, then (1) holds.
Similarly, we have

|uy|+ |vy|+ |wy| ≤ b′ and |uz|+ |vz|+ |wz| ≤ h′.

Hence

` + b + h ≤ (|ux|+ |uy|+ |uz|) + (|vx|+ |vy|+ |vz|) + (|wx|+ |wy|+ |wz|)
= (|ux|+ |vx|+ |wx|) + (|uy|+ |vy|+ |wy|) + (|uz|+ |vz|+ |wz|)
≤ `′ + b′ + h′.

Solution 2. The idea is to take neighbourhoods of both boxes. Let Bd denote the set of
points which are at distance at most d from a point in B, and similarly for B′. We compare
vol(Bd) and vol(B′

d). Let us illustrate the idea in 2 dimensions first, where we compare
areas.
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The area of Bd is easily seen to be

`h + 2(` + h)d + πd2.

Since B ⊂ B′, we have Bd ⊂ B′
d for every d, and so

`h + 2(` + h)d + πd2 ≤ `′h′ + 2(`′ + h′)d + πd2.

Subtracting πd2 from both sides and dividing by 2d, we have

`h

2d
+ ` + h ≤ `′h′

2d
+ `′ + h′.

This is true for every d > 0. Now let d →∞, and we get ` + h ≤ `′ + h′.

The proof in 3 dimensions is similar. One can easily show that

vol(Bd) = `bh + 2(`b + `h + bh)d + (` + b + h)πd2 +
4
3
πd3.

From vol(Bd) ≤ vol(B′
d) we see that

`bh + 2(`b + `h + bh)d + (` + b + h)πd2 ≤ `′b′h′ + 2(`′b′ + `′h′ + b′h′)d + (`′ + b′ + h′)πd2.

Dividing by πd2 and letting d tend to infinity, we find that ` + b + h ≤ `′ + b′ + h′.

4. There were several correct solutions to the first part of the question. For the second
part, the equation 4n(n + 1)α(n)2 + 1 = x2 can be written x2 − n(n + 1)y2 = 1 for
y = 2α(n), and so is an example of Pell’s equation, which is treated in many books using
continued fractions, etc, and this approach was followed successfully by some entrants. We
give instead the following elementary solution (submitted by Van Minh Nguyen), and his
solution to the first part using similar methods.

Suppose that 4n(n + 1)a2 + 1 is a perfect square for n = 0, 1, . . .. Of course a = 0 has
this property, and so we assume that a ≥ 1. Write 4n(n + 1)a2 + 1 = m2

n, where mn ≥ 0
is an integer. Using a ≤ a2 and 1 ≤ a2, we get

(2na+1)2 = 4n2a2+4na+1 ≤ 4n2a2+4na2+1 = m2
n ≤ 4n(n+1)a2+a2 = ((2n+1)a)2, (1)
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and so 2na + 1 ≤ mn ≤ (2n + 1)a. So we may write mn = 2na + xn, where 1 ≤ xn ≤ a for
all n. Hence

4n(n + 1)a2 + 1 = (2na + xn)2, (2)

so that

xn = a +
1

4an
− x2

n

4an
→ a as n →∞

(we use 1 ≤ xn ≤ a to see that x2
n/4an ≤ a2/4an = a/4n here). But xn is an integer, and

so xn = a must hold if n is sufficiently large. For such n, (2) tells us that

4n(n + 1)a2 + 1 = (2na + a)2,

from which we see that a = 1.
Now suppose that α(n) = an+ b has the property that 4n(n+1)α(n)2 +1 is a perfect

square for n = 0, 1, . . .. Again write 4n(n+1)α(n)2 +1 = m2
n, where mn ≥ 0 is an integer.

There were several incomplete solutions to this part of the problem, in which, without
justification, it was assumed that mn = cn2 + dn + e for some constants c, d and e. The
proof below essentially provides the justification for this.

If a = 0, then b = 1 by the first part, and so assume that a ≥ 1. Then α(n) ≥ 1 for
all n ≥ 1, and so, replacing a by α(n) in (1) above,

(2nα(n) + 1)2 ≤ m2
n ≤ ((2n + 1)α(n))2

so that mn = 2nα(n) + xn, where 1 ≤ xn ≤ α(n). Replacing a by α(n) in (2), we get

4n(n + 1)α(n)2 + 1 = (2nα(n) + xn)2, (3)

Therefore

xn = α(n) +
1

4α(n)n
− x2

n

4α(n)n
,

and so
xn

n
=

α(n)
n

+
1

4α(n)n2
− x2

n

4α(n)n2
→ a as n →∞

(we use 1 ≤ xn ≤ α(n) to see that x2
n/4α(n)n2 ≤ α(n)/4n2 → 0 here). So we can write

xn = an + yn, where yn/n → 0 as n →∞. Substituting this into (3), we get

4n(n + 1)α(n)2 + 1 = (2nα(n) + an + yn)2,

and so

yn =
4b− a

4
− yn

2n
+

b2

an
− byn

an
− y2

n

4an2
+

1
4an2

.

This tends to (4b− a)/4 as n →∞. Since yn is an integer, we must have yn = (4b− a)/n
for sufficiently large n. For such n,

4n(n + 1)α(n)2 + 1 = (2nα(n) + an + (4b− a)/4)2,

Expanding both sides, and comparing constant terms and the coefficients of n on both
sides, we get

8a(a− 2b) = 0 and 16− a2 − 8ab− 16b2 = 0.
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Since a > 0, the first equation tells us that a = 2b. Then the second equation becomes
16−4b2 = 0, so that b = 2. Hence (a, b) = (4, 2) is the only solution with a > 0. Explicitly,

4n(n + 1)(4n + 2)2 + 1 = (8n2 + 8n + 1)2.

5. There were several different solutions to this problem.

Solution 1 (the shortest): Let Am,n = (2n)!(2m)!
n!m!(n+m)! . Then it is routine to check that Am,n−1+

Am−1,n = 4Am−1,n−1. Hence

Am,n = −Am+1,n−1 + 4Am,n−1.

Since Am,0 =
(
2m
m

)
, the result is now a routine induction on n.

Solution 2 : The result is immediate from the following identity (due to Szily, 1895):

(2n)!(2m)!
n!m!(n + m)!

=
n∑

k=−n

(−1)k

(
2n

n− k

)(
2m

m− k

)
.

This identity is seen by considering (1 − x2)n = (1 + x)n(1 − x)n, using the binomial
theorem on the three expressions, and comparing coefficients of x2r on both sides.
Solution 3 : For each prime p, let np (respectively, dp) denote the number of times that p

divides the numerator (respectively, the denominator) of (2n)!(2m)!
n!m!(n+m)! . It is enough to show

that dp ≤ np for each p. Now it is well known that the number of times that p divides n!
is ⌊n

p

⌋
+

⌊ n

p2

⌋
+

⌊ n

p3

⌋
+ · · · ,

the j-th term of the series being zero if n < pj . So what we need to show is that

∞∑
j=1

⌊m

pj

⌋
+

∞∑
j=1

⌊ n

pj

⌋
+

∞∑
j=1

⌊m + n

pj

⌋
≤

∞∑
j=1

⌊2m

pj

⌋
+

∞∑
j=1

⌊2n

pj

⌋
,

and for this it is sufficient to show that⌊m

pj

⌋
+

⌊ n

pj

⌋
+

⌊m + n

pj

⌋
≤

⌊2m

pj

⌋
+

⌊2n

pj

⌋
for each j. In fact, it is easy to check that⌊m

k

⌋
+

⌊n

k

⌋
+

⌊m + n

k

⌋
≤

⌊2m

k

⌋
+

⌊2n

k

⌋
for any integer k ≥ 1.

6. To sum equals 2− log(2π). To see this, start by writing

∞∑
n=2

(−1)n n− 1
n(n + 1)

ζ(n) =
∞∑

n=2

(−1)n n− 1
n(n + 1)

∞∑
k=1

1
kn

=
∞∑

n=2

( ∞∑
k=1

n− 1
n(n + 1)

(−1
k

)n)
.
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We next want to interchange the order of this double sum, and write

∞∑
n=2

( ∞∑
k=1

n− 1
n(n + 1)

(−1
k

)n)
=

∞∑
k=1

( ∞∑
n=2

n− 1
n(n + 1)

(−1
k

)n)
. (1)

The most common theorem allowing us to interchange the order of double sums, and write

∞∑
n=1

( ∞∑
k=1

an,k

)
=

∞∑
k=1

( ∞∑
n=1

an,k

)
has the condition

∞∑
n=1

( ∞∑
k=1

|an,k|
)

< ∞.

This condition is not satisfied in the present example, basically because of the first term
1/1n = 1 in the series for ζ(n). So we only look at the series starting at k = 2. For all
n ≥ 2, we have the estimate

∞∑
k=2

1
kn

≤ 1
2n

+
∫ ∞

2

1
xn

dx =
1
2n

+
1

n− 1
1

2n−1
≤ 1

2n
+

1
2n−1

=
3
2n

,

and so it is easy to see that
∞∑

n=2

( ∞∑
k=2

|an,k|
)

< ∞

is valid for our an,k’s:

an,k =
n− 1

n(n + 1)

(−1
k

)n

.

Hence for these an,k,

∞∑
n=2

( ∞∑
k=1

an,k

)
=

∞∑
n=2

(
an,1 +

( ∞∑
k=2

an,k

))
=

∞∑
n=2

an,1 +
∞∑

n=2

( ∞∑
k=2

an,k

)
=

∞∑
n=2

an,1 +
∞∑

k=2

( ∞∑
n=2

an,k

)
=

∞∑
k=1

( ∞∑
n=2

an,k

)
.

This justifies the interchange of summations in (1). Now the double sum on the right in (1)
equals

∞∑
k=1

( ∞∑
n=2

( 2
n + 1

− 1
n

)(−1
k

)n)
.
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The inner sum can be rewritten

(−2k)
∞∑

n=1

1
n + 1

(−1
k

)n+1

−
∞∑

n=1

1
n

(−1
k

)n

. (2)

Using
∞∑

n=1

1
n

xn = log
( 1

1− x

)
,

valid if |x| < 1, we see that the expression (2) equals

(−2k)
(
log

( 1
1 + 1

k

)
+

1
k

)
− log

( 1
1 + 1

k

)
.

Now we sum this from k = 1 to k = N , say. After tidying up the last expression, we see
that we need to calculate the sum

−2N +
N∑

k=1

(2k + 1)
(
log(k + 1)− log(k)

)
. (3)

This equals (we are using “partial summation” here)

−2N+
N+1∑
k=1

(
2(k−1)+1

)
log(k)−

N∑
k=1

(2k+1) log(k) = −2N+(2N+1) log(N+1)−2
N∑

k=1

log(k).

Now
∑N

k=1 log(k) = log(N !), which by Stirling’s formula equals log
(√

2πe−NNN+1/2aN

)
,

where aN → 1 as N →∞. So the expression (3) equals

−2N + (2N + 1) log(N + 1)− 2
(
log(

√
2π)−N +

(
N +

1
2
)
log(N) + log(aN )

)
= (2N + 1) log((N + 1)/N)− log(2π) + log(aN ).

Using the above series for log(1/(1 − x)), for example, we see that log((N + 1)/N) =
1/N + O(1/N2), and so (2N + 1) log((N + 1)/N) → 2 as N →∞. The result follows.

7. Let us call
∑r

j=1 aj the weight of the string a1 · · · ar. If
∑r

j=1 aj = 1, then the string
consists of a single letter 1, which is of the required form.
Step 1. We first give a procedure for transforming any string s having repeated letters into
a string of smaller weight.

If s has weight W , then at most W − 1 applications of the procedure will therefore
produce a string in which there are no repeated letters.

Consider a string s which has some repeated letters. Let m be the largest repeated
letter in s. Then we transform s into a string having a pair of m’s with no m+1’s between
them. For if there is a letter m + 1 in the string, use a succession of moves of type (i) to
get a string s′ with the m + 1 at the right hand end. Since there is no second m + 1, there
are no m + 1’s between any two m’s.
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Choose two m’s in s with no further m’s between them, as near as possible and with
no m + 1’s between them. Then the string s contains the substring

ak = m,ak+1, . . . , ak+`−1, ak+` = m (1)

for some ` ≥ 1, and ak+1, . . . , ak+`−1 are all not m or m + 1.
If ` = 1, then the two m’s are adjacent, and we can delete one of them (a move of

type (ii)), resulting in a string s′ of weight S −m. Step 1 is done.
So ` ≥ 2, and we have as substring m,ak+1, . . . ,m. If ak+1 ≥ m+2 or if ak+1 ≤ m−2,

then we can interchange ak+1 and the first m (a type (iii) move), resulting in a string s′

having repeated m’s, no repeated letters greater than m, no m+1 between these m’s, but
with the repeated m’s closer together. Repeat this procedure as often as possible. That
is, continue this procedure until the letter to the right of the first m is m− 1, m, or m+1.
By the initial choice of pair of m’s, the letter to the right of the first m is m− 1, and we
have a substring of the form (1) in which ak+1 = m− 1.

If ` = 2, then s contains a substring m,m− 1,m. But then a move of type (iv) turns
this substring into m− 1,m, m− 1, and s into a string s′ of weight S − 1. Step 1 is done.

If ` ≥ 3 and ak+`−1 ≥ m + 2 or ak+`−1 ≤ m− 2, then we interchange ak+`−1 and the
right hand m. Continue this procedure until the letter to the left of the second m is m−1,
m, or m + 1. This letter must be m− 1 for the same reasons that ak+1 = m− 1. Now if
` = 3, we have a substring m,m− 1,m− 1,m, and so a move of type (ii) removes one of
the m− 1’s, resulting in a string s′ of weight S − (m− 1) < S, and we have done Step 1.

If ` ≥ 4, we look at ak+2. If ak+2 ≥ m + 2 or if ak+2 ≤ m − 3, then we can make
two type (iii) moves to replace m,m− 1, ak+2 by ak+2,m, m− 1. Repeat this procedure as
often as possible. That is, continue this procedure until the letter to the right of m,m− 1
is m− 2, m− 1, m, or m + 1. The cases m− 1, m and m + 1 are excluded as above, and
so ak+2 = m− 2 must hold. Similarly, if ` ≥ 5, ak+`−2 must be m− 2.

Continuing in this way, we obtain a substring (1) in which either ` = 2j + 1 is odd,
and the substring is

m,m− 1, . . . ,m− j, m− j, . . . , m− 1,m,

or ` = 2j is even, and the substring is

m,m− 1, . . . ,m− j + 1,m− j, m− j + 1 . . . , m− 1,m.

In the first case, we can delete one of the m−j’s getting a string s′ of weight S−(m−j) < S.
In the second case, we do a move of type (iv) to replace m − j + 1,m − j,m − j + 1

by m− j, m− j + 1,m− j. This gives a string s′ of weight S − 1 < S.
So in all cases with a repeated letter present we can transform the string into a string

of smaller weight.
Step 2. Now we show that if all the letters of the string are different, then we can reorder
them so that these letters are in increasing order.

To start with, we perform some moves of type (i) to move the largest letter in the
string to the right hand end. We next aim is to obtain a string of the form

a1, . . . , ar−2, ar−1, ar, (2)
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with ar−1 < ar and with all of a1, . . . , ar−2 less than ar−1. To do this, suppose that ai is
the largest of the letters a1, . . . , ar−1. Then in particular, ak ≤ ai−1 for k = i+1, . . . , r−1,
and, because ai ≤ ar − 1, we have ak ≤ ar − 2 for k = i + 1, . . . , r − 1. So by a succession
of moves of type (iii), we can move ar to the left until it is immediately to the right of ai.
Then by a succession of moves of type (i), we move the pair ai, ar to the right hand end.
The string is now of the form (2).

Suppose that we have brought the string into the form

a1, . . . , ar−j+1, . . . , ar, (3)

with ar−j+1 < · · · < ar and with all of a1, . . . , ar−j are less than ar−j+1. If the largest
of a1, . . . , ar−j is ai, then as in the previous step, all the letters ak, i < k ≤ r − j, are
at most ar−j+1 − 2. So we can move each of ar−j+1, . . . , ar to the left until they are
immediately to the right of ai. Then by a succession of moves of type (i), we move the
block ai, ar−j+1, . . . , ar to the right hand end. The string is now of the form (3), but with
j increased by 1. We can continue this procedure until the letters are all in increasing
order.

8. This is a result proved by J.H. Davenport in 1935. In a 1947 note, (Journal of the
London Mathematics Society , Volume 22, 1947, pages 100-101), he remarks that the result
was also proved by Cauchy in 1813.

Let m = |A| and n = |B|. The proof is by induction on n.
If n = 1, then B = {b}, say, and |A + B| = |A + b| = |A| = |A|+ |B| − 1 because the

map x 7→ x + b is a bijection of Fp.
If n = 2, write B = {b1, b2}. Suppose that |A+B| < m+2−1. Then |A+B| ≤ m, and

so |A + B| = m, because A + B ⊇ A + b1, which has m elements. So A + B = A + b1, and
similarly A + B = A + b2. Thus A + b1 = A + b2. Hence A = A + c, where c = b2− b1 6= 0.
But then A = (A+c)+c = A+2c, and A = (A+2c)+c = A+3c, etc. So for i = 0, . . . , p−1,
A = A + ic. Pick any a0 ∈ A. Then the p elements a0 + ic, 0 ≤ i ≤ p− 1 are distinct and
all in A. So A = Fp. So A + b1 = Fp too, and since A + B ⊇ A + b1, we have A + B = Fp,
so that |A + B| = p.

Now suppose that n > 2, and that the result has been proved for any subsets A and B
with |B| < n. Now let A,B ⊂ Fq, with |A| = m and |B| = n. Form C = A + B, and
let ` = |C|. If ` = p, we are done, and so suppose that ` < p. Let b, b′ ∈ B be distinct,
and apply the previous paragraph to C and {b, b′}. We see that C + {b, b′} has at least
` + 1 elements. Since C + b and C + b′ both have only ` elements, we see that C + b is not
contained in C + b′. So there is an element d ∈ C + b such that d 6∈ C + b′. So d− b ∈ C,
but d− b′ 6∈ C. Fix this d, and order the elements of B so that B = {b1, . . . , bn}, with

d− bi = ci ∈ C for i = 1, . . . , r and d− bj 6∈ C for j = r + 1, . . . , n.

Here 0 < r < n because the above b is one of the bi’s, i ≤ r, and the above b′ is one of the
bj ’s, j ≥ r + 1.

Now if j ≥ r + 1, and if a ∈ A, then a + bj cannot equal any ci, i ≤ r. For otherwise

a + bj = ci = d− bi,

so that
a + bi = d− bj 6∈ C,
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contrary to the definition of C. So if we form B′ = {br+1, . . . , bn}, then

A + B′ ⊂ C \ {c1, . . . , cr}.

Let `′ = |A + B′|. Then the last inclusion shows that `′ ≤ ` − r. On the other hand,
|B′| = n− r < n, and so by the induction hypothesis we have `′ ≥ m + (n− r)− 1. Hence

`− r ≥ `′ ≥ m + (n− r)− 1,

from which we see that ` ≥ m + n− 1.

9. For k ∈ N = {0, 1, . . .}, let

Pk =
qk − (−q−1)k

q + q−1
.

The first few Pk’s are P0 = 0, P1 = 1, P2 = q − q−1 = α, P3 = α2 + 1 and P4 = α3 + 2α.
These are certainly polynomials in α with coefficients in N. A routine calculation shows
that for k = 1, 2, . . .,

αPk + Pk−1 = Pk+1.

So we can prove that Pk is always a polynomial in α with coefficients in N by induction: the
assertion is true for k = 0, 1. Assume that n ≥ 1 and that P0, . . . , Pn are all polynomials
in α with coefficients in N. Then

Pn+1 = αPn + Pn−1

is also a polynomial in α with coefficients in N.
We can exhibit the polynomials explicitly. We claim that

Pn =
bn−1

2 c∑
i=0

(
n− i− 1

i

)
αn−2i−1. (1)

We check that by induction too. If n = 0, then the right hand side is zero (since
∑−1

i=0 xi

is by convention 0, for any xi), as is P0. If n = 1, then the right hand side of (1) is

0∑
i=0

(
1− i− 1

i

)
α1−2i−1 = 1

because
(
0
0

)
= 1. So (1) holds for n = 1 too. Suppose that (1) holds for n = 0, . . . , k,

where k ≥ 1. Then

Pk+1 = αPk + Pk−1

= α

b k−1
2 c∑

i=0

(
k − i− 1

i

)
αk−2i−1 +

b k−2
2 c∑

i=0

(
k − i− 2

i

)
αk−2i−2

=
b k−1

2 c∑
i=0

(
k − i− 1

i

)
αk−2i +

b k
2 c−1∑
i=0

(
k − i− 2

i

)
αk−2i−2

=
b k−1

2 c∑
i=0

(
k − i− 1

i

)
αk−2i +

b k
2 c∑

i=1

(
k − i− 1

i− 1

)
αk−2i (2)

12



We have used bk−2
2 c = bk

2 c − 1 here, and in the last equation replaced i by i′ = i + 1. If
1 ≤ i ≤ b(k − 1)/2c, then the coefficients of αk−2i in the two sums in (2) add to give(

k − i− 1
i

)
+

(
k − i− 1

i− 1

)
=

(
k − i

i

)
.

If i = 0, then there is a coefficient of αk−2i only in the first sum in (2), and it is(
k−1
0

)
= 1 =

(
k−0
0

)
.

If bk−1
2 c = bk

2 c, i.e., if k is odd , then we have shown that

Pk+1 =
b k

2 c∑
i=0

(
k − i

i

)
αk−2i, (3)

which is (1), with n = k + 1. If k = 2m is even, then for i = m = bk
2 c there is a coefficient

of αk−2i in (2) only in the second sum there, and it is(
k − i− 1

i− 1

)
=

(
2m−m− 1

m− 1

)
=

(
m− 1
m− 1

)
= 1 =

(
k −m

m

)
.

Hence the coefficient of αk−2i in (2) is
(
k−i

i

)
for all i between 0 and m = b (k+1)−1

2 c, and
so (3) holds in this case too. This completes the induction proof that (1) holds for all n.

10. We first show that if x, y ∈ X satisfy x2 = x and y2 = y, then xy = yx must hold. To
see this, let a = y(xy)′x. Then

a2 = y(xy)′xy(xy)′x = y(xy)′x = a,

(xy)a(xy) = xyy(xy)′xxy = xy(xy)′xy = xy,

and
a(xy)a = y(xy)′xxyy(xy)′x = y(xy)′xy(xy)′x = y(xy)′x = a.

So a = (xy)′ by uniqueness. But a = aaa, so again by uniqueness, a = a′ = (xy)′′ = xy.
Thus (xy)2 = a2 = xy. Similarly, (yx)2 = yx, so (xy)(yx)(xy) = xyxy = xy, and similarly
(yx)(xy)(yx) = yx. So again by uniqueness, yx = (xy)′ = xy.

Now let x, y ∈ X, and note that (uu′)2 = uu′ and (u′u)2 = u′u for all u ∈ X. So
using the last paragraph,

(xy)(y′x′)(xy) = x(yy′)(x′x)y = x(x′x)(yy′)y = xy,

and
(y′x′)(xy)(y′x′) = y′(x′x)(yy′)x′ = y′(yy′)(x′x)x′ = yx,

so that, finally, again by uniqueness, (xy)′ = y′x′.
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