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SOLUTIONS

1. The result is well known, and called Morley’s Theorem. Many proofs are known. See
for example H.S.M. Coxeter, “Introduction to Geometry”, page 23.

2. If the number of vertices, edges and faces of a polyhedron are V , E and F , respectively,
then Euler’s formula states that V −E +F = 2. Let di be the number of edges coming out
of the i-th vertex, and let ej be the number of edges on the j-th face. Then

∑V
i=1 di = 2E,

because each edge is counted twice, once for each of its endpoints. Also,
∑F

j=1 ej = 2E
because each edge is common to exactly 2 faces. To prevent degeneracies, we must have
di, ej ≥ 3 for each i, j. Hence

2E =
V∑

i=1

di ≥ 3V and 2E =
F∑

j=1

ej ≥ 3F. (1)

We now start answering the particular problems given:
a) If E = 7, then by (1), V, F ≤ b2E/3c = b14/3c = 4. But Euler’s formula tells us

that V + F = E + 2 = 9. This is a contradiction, and so E = 7 is impossible.
b) Notice that V ≥ 4, as otherwise we would have a planar figure. Hence 2E =∑V

i=1 di ≥ 3V ≥ 12, and so E ≥ 6. If k ≥ 3 is any integer, consider a pyramid with a
k-gon as its base. This polyhedron has E = 2k (and V = F = k + 1). So any even E ≥ 6
is possible. If we use one of the sloping triangular faces of this pyramid as the base of a
tetrahedron, we add 3 new edges, and so E = 2k + 3 (and V = k + 2, F = k + 3). So each
odd E ≥ 9 is possible. Hence the possible values of E are just the integers ≥ 6, except 7.

c) Suppose that E = 11. We shall show that up to isomorphism, there are precisely
4 possible polyhedra. Now V +F = E +2 = 13 by Euler’s formula. Also V, F ≤ b2E/3c =
b22/3c = 7 by (1). Hence the only possibilities are (V, F ) = (6, 7) and (V, F ) = (7, 6).

Case (i): (V, F ) = (6, 7). Now
∑F

j=1 ej = 2E = 22 shows that one ej equals 4, and
the others equal 3. Let F0 be the face with 4 sides. Call its vertices A, B, C and D. Let
F1 . . . , F4 be the second faces having edges AB, BC, CD and DA, respectively. These
must all be triangles. Let P1, . . . , P4 be their third vertices, as in the next diagram. We
know that P1, . . . , P4 cannot be A, B, C or D. Since V = 6, we have only 2 more vertices
at our disposal, say P and Q. So the four vertices Pi cannot all be different; in fact, they
must all be either P or Q.
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Interchanging the labels P and Q if necessary, we may assume one of 3 possibilities:
1. Pi = P for 2 i’s and Pi = Q for 2 i’s,
2. Pi = P for 3 i’s and Pi = Q for 1 i, or
3. Pi = P for all 4 i’s.
The first possibility has 2 subcases: 1(a). The two P ’s are “adjacent”, and 1(b). The

two P ’s are “opposite”. In Case 1(a), we may assume that the two adjacent P ’s are P1

and P4:
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Now our polyhedron only has 11 edges, and 10 of them are already indicated in the last
diagram: AB, BC, CD, DA, AP , BP , DP , BQ, CQ and DQ. We next show that the
11-th edge must be PQ. Suppose that it is not PQ. It cannot involve just A, B, C and D,
so it must involve one of these vertices and one of P and Q. The possibilities are AQ
or CP . Only one of these can be an edge, or else E ≥ 12 would hold. Suppose that AQ
is an edge. Consider the face F4 = ADP . The edge DP of this face must lie on exactly
one other face F , and F must be a triangle. Running through the possible third vertices
of F besides D and P , we see that none is possible. Similarly, if CP is an edge, then the
edge BQ of F2 can only lie on one face, again a contradiction. So the 11-th edge of the
polyhedron is PQ. Now all the edges of the figure are fixed. There is a polyhedron of this
type. We can imagine it as inscribed in a cube, the face F0 being the base, and the edge
PQ joining two diagonally opposite vertices on the top of the cube.

Case 1(b) is impossible, because the following figure already shows 12 edges.
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Consider Case 2:
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Again there are 10 edges shown. If the 11-th is not PQ, then it must be AQ or DQ. By
symmetry, we may suppose that AQ is an edge, and so DQ is not an edge. Again by
considering the second face having edge CQ, we get a contradiction. So PQ is the 11-th
edge. All the edges are fixed now. The polyhedron must be the one defined in the solution
of part (b) of this question, with a pyramid on the square base ABCD and top at P , but
then with a tetrahedron placed on the face BCP , its fourth vertex being Q.

Finally, let us eliminate Case 3. In that case, with all the Pi’s equal to P , we have
in the first of the above figures already a pyramid on a square base, with 8 edges. To get
11 edges, the remaining vertex Q must be connected to 3 of the vertices A, B, C, D and P .
But then Q is connected to 2 adjacent vertices from amongst these 5, and the existing edge
between these two vertices would have to belong to 3 faces, which is impossible.

Case (i): (V, F ) = (7.6). We can get the polyhedra of this type from the two just found
by duality: we put a new vertex in the middle of each face, and join two new vertices if the
corresponding faces have a common edge. This is what we get be dualizing the polyhedron
of Case 1(a) above. It looks like a wedge from which we have made an oblique slice.
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By dualizing the polyhedron of Case 2, we get the following polyhedron:
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3. This problem is discussed in the book “Unsolved problems in number theory”, by
R.K. Guy. The largest n for which SUMS, or indeed anyone, knows an example is n = 5.
Here is such an example. Set

x1 = 7442, x2 = 28 658, x3 = 148 583, x4 = 177 458, x5 = 763 442.
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Then
x1 + x2 = 1902,

x1 + x3 = 3952,

x1 + x4 = 4302,

x1 + x5 = 8782,

x2 + x3 = 4212,

x2 + x4 = 4542,

x2 + x5 = 8902,

x3 + x4 = 5712,

x3 + x5 = 9552,

x4 + x5 = 9702.

4. We show that the numbers n with the stated property are precisely the numbers of the
form pq, where p and q are (possibly equal) prime numbers.

As a preliminary step, we first show that if r ≥ 2 and if n1, . . . , nr ≥ 2 are integers,
then n1 × n2 × · · · × nr ≥ n1 + · · ·+ nr, with equality only if r = 2 and n1 = n2 = 2. To
see this, first suppose that r = 2. Then

n1n2 − (n1 + n2) = (n1 − 1)(n2 − 1)− 1 ≥ 0,

with equality only when n1 = n2 = 2. Now suppose that r ≥ 3, and that we have proved
that n1 × n2 × · · · × nr−1 ≥ n1 + · · ·+ nr−1 if each ni is at least 2. Given n1, . . . , nr ≥ 2,
suppose that nr is the least of the ni’s. Then

n1 × · · · × nr = (n1 × · · · × nr−1)× nr

≥ (n1 + · · ·+ nr−1)× nr by the induction hypothesis,
≥ 2(n1 + · · ·+ nr−1)
> n1 + · · ·+ nr−2 + 2nr−1 since r ≥ 3,

≥ n1 + · · ·+ nr.

Now we return to the problem at hand. Suppose that n can be factored n1n2n3, where
n1, n2, n3 ≥ 2. Then by the statement just proved, u := n1n2n3− (n1 +n2 +n3) is strictly
positive, and using u 1’s in the next two equations, we can write

n = n1 × n2 × n3 × 1× · · · × 1
n = n1 + n2 + n3 + 1 + · · ·+ 1.

But we can also write n = (n1n2)n3, and n1n2 ≥ 4 and n3 ≥ 2. So by the above statement,
v := n1n2n3 − (n1n2 + n3) is strictly positive, and using v 1’s in the next two equations,
we can write

n = (n1n2)× n3 × 1× · · · × 1
n = (n1n2) + n3 + 1 + · · ·+ 1.

Thus whenever n may be written n = n1n2n3, with the ni’s all at least 2, we can write n
in at least two ways in the required way, and so n does not satisfy the given conditions.
Hence any n which is divisible by 3 or more primes cannot satisfy the given conditions.

If n = pq is the product of just 2 primes, then it is easy to see that, using w = pq−(p+q)
1’s in the next two equations,

n = p× q × 1× · · · × 1
n = p + q + 1 + · · ·+ 1
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shows that n satisfies the conditions (no 1’s are used if p = q = 2).
To complete the proof, we observe that if n = 1 or if n = p, a prime, then n cannot

satisfy the required conditions. For 1 = n1×· · ·×nr can only happen if n1 = · · · = nr = 1,
in which case 1 < n1 + · · ·+nr = r since r ≥ 2. Also n = p = n1×· · ·×nr can only happen
if n1, say, equals p, and the other ni’s equal 1. But then n1 + · · ·+nr = p+(r−1) > p = n.
So a decomposition of n = p of the required type is not possible.

5. If we multiply both sides of the equation x4 + x3y + x2y2 + xy3 + y4 = 1 by x − y,
we get the equation x5 − y5 = x − y. That is, x5 − x = y5 − y. So to have four distinct
numbers x1, . . . , x4 with the given property is the same as having four distinct numbers
x1, . . . , x4 for which x5

1 − x1 = · · · = x5
4 − x4. Let k be the common value of the x5

i − xi.
Then the equation x5 − x − k = 0 must be satisfied by each of x1, . . . , x4. We now show
that, for any k ∈ R, the equation x5 − x− k = 0 has at most 3 solutions.

Let f(x) = x5 − x − k. Then by Rolle’s Theorem, between any two solutions of
f(x) = 0 we must have a solution of f ′(x) = 0. That is, 5x4 − 1 = 0. But the only real
solutions of 5x4 − 1 = 0 are ±1/51/4. As f ′(x) = 0 has only 2 solutions, Rolle’s Theorem
says that f(x) = 0 has at most 3 solutions.

6. Here are two different methods:
Method (i): Let P (n) denote the set of partitions of n, i.e., the set of ordered r-tuples

(a1, . . . , ar) of positive integers, where r ≥ 1, a1 ≥ · · · ≥ ar and a1 + · · · + ar = n. Thus
pn = |P (n)|. It is convenient to define P (0) to consist of the empty tuple (), and set p0 = 1.
For all n ≥ 1, consider the map f : P (n) →

⋃n
i=1 P (n − i) defined by f : (a1, . . . , ar) 7→

(a2, . . . , ar) ∈ P (n − a1), where in the case r = 1, the 1-tuple (n) ∈ P (n) is mapped to
the empty tuple () ∈ P (0). This map is injective. For if f maps (a1, . . . , ar) ∈ P (n) and
(b1, . . . , bs) ∈ P (n) to the same tuple, then (a2, . . . , ar) = (b2, . . . , bs), so that r = s and
ai = bi for i = 2, . . . , r. Also a1 = b1 because

∑r
i=1 ai =

∑r
i=1 bi = n.

The injectivity of f implies that |P (n)| ≤
∣∣⋃n

i=1 P (n− i)
∣∣. That is,

pn ≤ p0 + · · ·+ pn−1. (1)

We next show that pn ≤ 2n−1 for all n ≥ 1 by induction on n. Since p1 = 1 = 20, this
inequality is valid if n = 1. Assuming that n ≥ 2 and the inequalities pk ≤ 2k−1 are valid
for 1 ≤ k ≤ n− 1, by (1) we get

pn ≤ 1 + 1 + · · ·+ 2n−2 = 2n−1.

Hence
p1 + · · ·+ pn ≤ 1 + 21 + · · ·+ 2n−1 = 2n − 1 < 2n.

Method (ii). Let C(n) denote the set of compositions of n, i.e., the set of ordered
r-tuples (a1, . . . , ar) of positive integers, where r ≥ 1 and a1 + · · · + ar = n. Thus the
condition a1 ≥ · · · ≥ ar required of a partition is not imposed. Let cn = |C(n)|. Clearly
P (n) ⊂ C(n), and so pn ≤ cn.

The number of compositions (a1, . . . , ar) of n having length r is
(
n−1
r−1

)
. This can be

seen by imagining n balls in a row. There is a space between the first and the second, the
second and the third, and so on, until the last space, between the n − 1-st and the n-th
ball. If we choose r − 1 of these spaces, which we can in

(
n−1
r−1

)
ways, then we obtain a
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composition of n of length r. Moreover, every such composition can be obtained in this
way. For example, the selection of the three spaces indicated by the vertical lines:

• • | • • • | • | • • • •

corresponds to the composition (2, 3, 1, 4) of 10 having length 4.
Hence by the Binomial Theorem, the total number of compositions of n is(

n− 1
0

)
+

(
n− 1

1

)
+ · · ·+

(
n− 1
n− 1

)
= (1 + 1)n−1 = 2n−1.

Remembering that pk ≤ ck for each k, we therefore get

p1 + · · ·+ pn ≤ c1 + · · ·+ cn = 20 + · · ·+ 2n−1 = 2n − 1 < 2n.

7. In the cycle decomposition of a permutation, the cycles are disjoint, and so we can
have at most one cycle of length greater than n/2. Let k > n/2. To obtain a permutation
with a cycle of length k, we pick out the points to be in the k-cycle (in

(
n
k

)
ways), make

them into a k-cycle (in (k− 1)! ways), and permute the remaining n− k points arbitrarily
((n − k)! possibilities). So the set Ck of permutations having a cycle of length k has(
n
k

)
(k − 1)!(n− k)! elements.
For k > n/2, i.e., for k ≥ bn/2c+1, the sets Ck are disjoint. Hence, writing m = bn/2c,

the proportion of permutations with a cycle of length greater than n/2 is

pn =
1
n!

n∑
k=m+1

|Ck|

=
1
n!

n∑
k=m+1

(
n

k

)
(k − 1)!(n− k)!

=
n∑

k=m+1

1
k

(1)

= H(n)−H(m) (2)

where H(n) =
∑n

k=1 1/k. In (1), the sum has n −m ≥ n/2 terms, each at least 1/n. So
we get pn ≥ 1/2.

We use the well-known result

H(n) = lnn + γ + εn,

where γ is Euler’s constant and εn → 0 as n → ∞, together with (2), to get the limiting
behaviour of pn. Recall that m = bn/2c is either n/2 or (n− 1)/2 according as n is even
or odd. So lnn − lnm = ln(n/m) equals ln 2 + δn, where δn is either 0 or ln(n/(n − 1)).
Thus δn → 0 as n →∞. Hence

pn = H(n)−H(m)
= ln n− lnm + εn − εm

= ln 2 + δn + εn − εm

→ ln 2 as n →∞.
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8. Given n numbers, not necessarily distinct, we can form a set consisting of these numbers,
but keeping track of the multiplicities of each of the numbers. We shall refer to such an
object as a multiset of n numbers or of size n. We refer to the sum of the elements
of a multiset as the ordinary sum of its elements, adding each element as often as its
multiplicity. The statement to be proved is this:

P (n): Given any multiset of 2n−1 integers, there is a sub-multiset of size n for which
the sum of the elements is divisible by n.

Note, incidentally, that the result is not true if 2n− 1 is replaced by 2n− 2, since the
multiset consisting of n− 1 0’s and n− 1 1’s gives a counterexample.

First we show that P (a) and P (b) together imply P (ab). So assume we are given
2ab − 1 integers. Since 2ab − 1 ≥ 2a − 1, we can find a of them whose sum is a multiple
of a. Remove these a elements, and if we still have at least 2a−1 left, repeat the argument,
i.e., take out another a elements with sum divisible by a. We can clearly do this 2b − 1
times. So we get 2b− 1 multisets of size a, the sums of which are s1a, s2a, . . . , s2b−1a. By
P (b) we can choose b of the numbers s1, s2, . . . , s2b−1 with sum divisible by b. Then the
union of the corresponding multisets of size a is a multiset of size ab with sum divisible
by ab.

So we are reduced to proving P (n) for n prime. Let Fp denote the set {0, 1, . . . , p−1},
a field when addition and multiplication are taken mod p. We use induction on k to prove
the following statement Q(k) for all k from 2 to p (inclusive):

Q(k): Given 2k − 1 elements of Fp such that no element is repeated k or more times,
we can find k sub-multisets of size k giving k distinct sums.

If we can prove this, then Q(p) says that given 2p− 1 integers mod p with no element
repeated p or more times, then for each r in Fp one can find p of these elements with
sum r. In particular, we can find p of them with sum 0. If some element is repeated p or
more times we can obviously find p of them with sum 0. So Q(p) implies P (p).

Q(2) says that given 3 distinct elements a, b, c there are two sets of size 2 with distinct
sums. This is easy: {a, b} and {a, c} will do.

Assume that 2 ≤ k ≤ p−1 and that Q(k) holds, and we are given 2k+1 elements of Fp

with nothing repeated k+1 or more times. Let a be an element with maximal multiplicity
in our given multiset S of size 2k + 1, and b an element different from a with multiplicity
as large as possible. Remove a and b, leaving a multiset S′ with 2k − 1 elements. Then a
and b have multiplicity less than k in S′, and if some element c 6= a, b of S′ has multiplicity
k or more, then a and b have multiplicity at least k in the original multiset S, giving at
least 3k elements, whereas in fact there are only 2k + 1. So in S′ no element occurs with
multiplicity k or more. By Q(k), there are k submultisets S1, S2, . . . , Sk, of S′ of size k,
with k different sums. Now the sets S1 ∪ {a}, S2 ∪ {a}, . . . , Sk ∪ {a} have size k + 1 and
give k distinct sums. The same is true for the sets Si ∪ {b}. It suffices to show that one of
the latter has sum different from all of the former. The only alternative is that the sums of
the Sj ∪{a} are a permutation of the sums of the Si ∪{b}. Then the sum of all the former
equals the sum of all the latter, and cancelling the common terms then gives ka = kb. But
k is one of 2, 3, . . . , p− 1, and so gcd(k, p) = 1. So a = b, a contradiction.

9. Write N for the set {1, . . . , n}. We show that with respect to the basis {eS : S ⊂ N},
the linear transformation Z = XY − Y X is diagonal, with ZeS = (2|S| − n)eS for each
S ⊂ N .
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We first deal with the special cases S = ∅ and S = N . Now Xe∅ =
∑

i∈N e{i} and
Y e∅ = 0. Also, Y e{i} = e∅ for each i ∈ N . Hence

Ze∅ = X(Y e∅)− Y (Xe∅) = X(0)− Y
(∑

i∈N

e{i}

)
= 0−

∑
i∈N

Y (e{i}) = −ne∅.

Next, XeN = 0 and Y eN =
∑

i∈N eN\{i}, and XeN\{i} = eN for each i ∈ N . Hence

ZeN = X(Y eN )− Y (XeN ) = X
(∑

i∈N

eN\{i}

)
− Y (0) =

∑
i∈N

X(eN\{i}) = neN .

Now suppose that ∅ $ S $ N . Let T denote the complement N \ S of S in N . Then
XeS =

∑
t∈T eS∪{t} and Y eS =

∑
s∈S eS\{s}. For each s ∈ S, X

(
eS\{s}

)
is the sum of eS

and the basis vectors e(S\{s})∪{t}, t ∈ T . For each t ∈ T , Y
(
eS∪{t}

)
is the sum of eS and

the basis vectors e(S∪{t})\{s}, s ∈ S. Notice that (S ∪ {t}) \ {s} = (S \ {s}) ∪ {t} = Ss,t,
say, for all s ∈ S and t ∈ T . Moreover, the |S| × |T | sets Ss,t obtained by varying s ∈ S
and t ∈ T are all distinct. Hence

XY eS =
∑
s∈S

X
(
eS\{s}

)
=

∑
s∈S

(
eS +

∑
t∈T

e(S\{s})∪{t}

)
= |S|eS +

∑
s∈S,t∈T

eSs,t
,

and

Y XeS =
∑
t∈T

Y
(
eS∪{t}

)
=

∑
t∈T

(
eS +

∑
s∈S

e(S∪{t})\{s}

)
= |T |eS +

∑
s∈S,t∈T

eSs,t .

Subtracting, we get

(XY − Y X)eS = (|S| − |T |)eS = (2|S| − n)eS .

10. Given fractions a/b and e/f , where 0 < b, e, f ∈ N and 0 ≤ a ∈ N, the condition
be − af = 1 implies that af < be, so that a/b < e/f . We call the interval I = [a/b, e/f ]
good in this case. Notice that the condition be − af = 1 also implies that gcd(a, b) =
1 = gcd(e, f). Given a good interval I with left hand endpoint `(I) = a/b and right hand
endpoint r(I) = e/f , we call the fraction (a + e)/(b + f) the median m(I) of I. Notice
that

b(a + e)− a(b + f) = (b + f)e− (a + e)f = be− af = 1,

and so a/b < (a + e)/(b + f) < e/f , gcd(a + e, b + f) = 1, and so both I ′ = [`(I),m(I)]
and I ′′ = [m(I), r(I)] are good.

We start from the good interval I0,1 = [0/1, 1/1], and form I1,1 = I ′0,1 = [0/1, 1/2]
and I1,2 = I ′′0,1 = [1/2, 1/1]. Then we form I2,1 = I ′1,1 = [0/1, 1/3], I2,2 = I ′′1,1 = [1/3, 1/2],
I2,3 = I ′1,2 = [1/2, 2/3] and I2,4 = I ′′1,2 = [2/3, 1/1]. Continuing, after n steps we have 2n

intervals In,j , j = 1, . . . , 2n, where In,2j−1 = I ′n−1,j and In,2j = I ′′n−1,j for j = 1, . . . , 2n−1.
This divides [0, 1] into 2n non-overlapping intervals, with `(In,j) = r(In,j−1) for j =
2, . . . , 2n. So, given, n ∈ N, each x ∈ [0, 1] belongs to In,j for some j ∈ {1, . . . , 2n}, and x
belongs to two In,j ’s if x 6= 0, 1 is an endpoint of an In,j . Notice that the two endpoints of
a good interval I are endpoints of both I ′ and I ′′.
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Given a rational number q ∈ (0, 1), we next show that q is the median of at most
one of the intervals In,j . For q cannot be the median of both In,j and In,k, where j 6= k,
because the median of a good interval is interior to that interval, and the two intervals
In,j and In,k can intersect in at most an endpoint. Nor can q be the median of both Im,j

and In,k, where m 6= n. For if m < n, say, then q being the median of Im,j implies that q
is an endpoint of Im+1,2j−1 (and of Im+1,2j), and so for all m′ > m q remains an endpoint
of some Im′,i. In particular, q is an endpoint of an In,i since n > m, and so cannot also be
the median of In,k.

Given a rational number q ∈ (0, 1), it remains to show that q is the median of some In,j .
Case (a). Suppose firstly that q is an endpoint of some In,j . Let q be an endpoint of

In,j , with n minimal. Then n 6= 0 because q 6= 0, 1. If q is the left endpoint of In,j , and
j is odd, then q is also the left endpoint of In−1,(j+1)/2, contrary to the minimality of n.
Similarly, if q is the right endpoint of In,j and j is even, then q is also the right endpoint
of In−1,j/2, again a contradiction. So either q is the left endpoint of In,j , with j even, in
which case q is the median of In−1,j/2, or q is the right endpoint of In,j , with j odd, in
which case q is the median of In−1,(j+1)/2.

Case (b). Suppose finally that q ∈ (0, 1) is rational, and not the endpoint of any In,j .
Hence for each n ∈ N, there is exactly one jn ∈ {1, . . . , 2n} such that q ∈ In,jn . Write In

instead of In,jn . The intervals In are all distinct, because each In+1,j is a proper subset
of an In,k. But if q = c/d, if I = [a/b, e/f ] is good, and if q ∈ (a/b, e/f), then b + f ≤ d.
To see this, notice that ad < bc, and so bc− ad ≥ 1, so that fbc− fad = f(bc− ad) ≥ f .
Also, cf < de, and so de− cf ≥ 1, so that bde− fbc = b(de− cf) ≥ b. thus

d = d(be− af) = (dbe− fbc) + (fbc− daf) ≥ b + d.

The condition b + f ≤ d shows that the denominators of the endpoints of any good I
containing q are both bounded by d. For I ⊂ [0, 1], the numerators of the endpoints of I
are therefore also bounded by d. Hence there are only finitely many good I ⊂ [0, 1] which
can contain q. So it is impossible that q ∈ In for n = 1, 2, . . .. So Case (b) cannot happen.
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