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SOLUTIONS

1. Imagine the possible configurations of coins as infinite sequences (p1, p2, . . .), where
p1 ≥ p2 ≥ · · ·, and where pi = 0 for i sufficiently large. If pi = 0 for all i > r, we shall
simply write the configuration as (p1, . . . , pr). If p1 = a, then a “step” consists of replacing
(p1, p2, . . .) by (q1, q2, . . .), where qi = pi+1 + 1 for i = 1, . . . , a, and qi = pi+1 for i > a.

For n = 1, 2, . . ., let tn = 1 + 2 + · · ·+n = n(n+ 1)/2. Suppose that we have N coins.
We shall show that if N = tn, then we eventually obtain a stable configuration with piles
of size n, n − 1, . . . , 2, 1. More generally, if tn ≤ N < tn+1, then we shall show that after
sufficiently many steps, we obtain a configuration of the form

(n+ c1, n− 1 + c2, . . . , n+ 1− i+ ci, . . . , 1 + cn, 0 + cn+1), (1)

where c1, . . . , cn+1 ∈ {0, 1}, (N − tn of them 1’s). Notice that from (1), one step yields
the configuration (n + c2, n − 1 + c3, . . . , 1 + cn+1, 0 + c1), and so the ci’s cycle around,
returning to (1) after n + 1 steps. We prove this by induction on N . If N = 1, we are in
a stable configuration. If N = 2, the possible configurations are (2) and (1, 1), and these
alternate, and are of the form (1), with (c1, c2) = (1, 0) and (0, 1), respectively. If N = 3
(= t2), then the possible configurations are (3), (1, 1, 1) and (2, 1). The last is stable, while
the first two get to (2, 1) after 2 and 1 steps, respectively.

Suppose that N > 3 and that any configuration of N−1 coins leads to a configuration
of the form (1). Suppose that we have N coins, and imagine that N − 1 of them are silver
and one of them is gold, initially in the smallest non-empty pile. In carrying out a step
when the gold coin starts in the first pile, distribute the coins of this pile on the other piles
so that the gold coin is used last . Then if the gold coin is in the i0-th pile at some stage,
we must have pi0 > pi0+1, and so we get a valid configuration (p′1, p

′
2, . . .) of N − 1 coins

by removing the gold coin; explicitly, p′i = pi if i 6= i0, and p′i0 = pi0 − 1. If we perform a
step on the N coins (using the gold one last if it is in the first pile) and then remove the
gold coin, it is routine to check that we get the same result as if we first remove the gold
coin and then perform a step on the silver ones. So as we go through the steps on the N
coins, the configurations of the N − 1 silver coins are changed as if the gold coin were not
there. By the induction hypothesis, after sufficiently many steps the N − 1 coins are in a
configuration (1). The n there must be the largest one such that tn ≤ N −1. Now suppose
that the gold coin is in the i-th pile. The N coins are then in the configuration

(n+ c1, . . . , n+ 1− i+ ci + 1, . . . , 1 + cn, 0 + cn+1). (2)

If ci = 0, we are done, as this is of the form (1), where (c1, . . . , cn+1) there is replaced by
(c1, . . . , ci−1, 1, ci+1, . . . , cn+1). Note that if all the cj ’s, j 6= i, are 1, then the configura-
tion (2) is in the form (1), but with n replaced by n+ 1 and all the cj ’s replaced by 0; we
must have N = tn+1 in this case. We deal with the case ci = 1 as follows: When the N
coins are as in (2), with the gold coin in the i-th pile, we say that the gold coin is associated
to ci. If we perform i− 1 steps on the configuration (2), we get

(n+ ci+ 1, n− 1 + ci+1, . . . , 1 + ci−2, 0 + ci−1) = (n+ 2, n− 1 + ci+1, . . . , 1 + ci−2, 0 + ci−1).
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So the gold coin is still associated with ci. Now performing two more steps, we first get
the n+ 2-tuple

(n+ ci+1, n− 1 + ci+2, . . . , 2 + ci−2, 1 + ci−1, 1, 1),

then the n+ 1-tuple

(n+ ci+2, n− 1 + ci+3, . . . , 3 + ci−2, 2 + ci−1, 2, ci+1 + 1), (3)

the gold coin being in the n + 1-st pile. The configuration (3) has the same form as (2),
but (c1, . . . , cn+1) there is replaced by (ci+2, ci+3, . . . , ci−1, ci, ci+1), and the gold coin is
now associated with ci+1. At least one of the cj ’s is 0, since tn ≤ N − 1 < tn+1, and so
repeating the above steps sufficiently often, we can arrange that the gold coin is associated
with a cj which is 0, and then the configuration is in the form (1), as explained above.

2. More generally, suppose that we have N = m + n stars A1, . . . , Am, B1, . . . , Bn, and
that the cloud obscures B1, . . . , Bn. The sum of the distances between the stars is initially

S =
m∑

i,j=1:
i<j

d(Ai, Aj) +
n∑

i,j=1:
i<j

d(Bi, Bj) +
m∑
i=1

n∑
j=1

d(Ai, Bj).

By the triangle inequality, we have d(Ai, Aj) ≤ d(Ai, Bk) + d(Bk, Aj) for all i, j, k. Sum-
ming over k, we get nd(Ai, Aj) ≤

∑n
k=1 d(Ai, Bk) +

∑n
k=1 d(Bk, Aj). Now for fixed i we

sum over j 6= i. This gives

n
m∑
j=1:
j 6=i

d(Ai, Aj) ≤ (m− 1)
n∑
k=1

d(Ai, Bk) +
m∑
j=1:
j 6=i

n∑
k=1

d(Bk, Aj)

= (m− 2)
n∑
k=1

d(Ai, Bk) +
m∑
j=1

n∑
k=1

d(Bk, Aj).

Finally, we sum over i, and get

n
m∑

i,j=1:
i6=j

d(Ai, Aj) ≤ (m− 2)
m∑
i=1

n∑
k=1

d(Ai, Bk) +m
m∑
j=1

n∑
k=1

d(Bk, Aj)

= 2(m− 1)
m∑
i=1

n∑
k=1

d(Ai, Bk).

Hence

n
m∑

i,j=1:
i<j

d(Ai, Aj) ≤ (m− 1)
m∑
i=1

n∑
k=1

d(Ai, Bk)

= (m− 1)
[
S −

m∑
i,j=1:
i<j

d(Ai, Aj)−
n∑

i,j=1:
i<j

d(Bi, Bj)
]

≤ (m− 1)
[
S −

m∑
i,j=1:
i<j

d(Ai, Aj)
]
,
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and therefore
m∑

i,j=1:
i<j

d(Ai, Aj) ≤
m− 1

m+ n− 1
S =

m− 1
N − 1

S.

In particular, if m = n = 25, then (m− 1)/(N − 1) = (m− 1)/(2m− 1) = 24/49 < 1/2.

3. Suppose that z1 = eiθ1 and z2 = eiθ2 , where θ1, θ2 ∈ R. Then if z1z2z3 = 1, we have
z3 = eiθ3 for θ3 = −(θ1 + θ2). Also, z1 + z2 + z3 = x+ iy for

x = cos(θ1) + cos(θ2) + cos(θ1 + θ2)
y = sin(θ1) + sin(θ2)− sin(θ1 + θ2).

These equations define a mapping or transformation f from the (θ1, θ2)-plane to the com-
plex, or (x, y)-plane. It is easy to calculate that the Jacobian of this transformation is

J(θ1, θ2) =
1
2i

(eiθ1 − eiθ2)(eiθ1 − eiθ3)(eiθ2 − eiθ3),

remembering that θ3 = −(θ1 + θ2). The open mapping theorem tells us that for any point
(θ1, θ2) such that J(θ1, θ2) 6= 0, the point f(θ1, θ2) is an interior point of the image f(R2)
of f . So if f(θ1, θ2) is a boundary point of f(R2), then J(θ1, θ2) = 0 must hold. That is,
the three numbers z1 = eiθ1 , z2 = eiθ2 and z3 = eiθ3 cannot be distinct. By symmetry,
we may suppose that z1 = z2 = eiθ, say. Then z3 = e−2iθ. Hence every boundary point
of f(R2) equals f(eiθ, eiθ) = 2eiθ + e−2iθ for some θ. Now as θ varies (and we may assume
that 0 ≤ θ ≤ 2π), 2eiθ + e−2iθ traverses the following curve in the complex plane:

.
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This is a “hypocycloid”. It is now clear that the set S of the question consists of this
hypocycloid and its interior. The three cusps are at the points z1 + z2 + z3, where z1 =
z2 = z3 = e2πij/3, j = 0, 1, 2.
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The question may be generalized to the case of n complex numbers zj of modulus 1
and product 1. The set of numbers of the form z1 + · · ·+zn is the set bounded by the curve
obtained by taking z1 = · · · = zn−1 = eiθ and zn = e−i(n−1)θ. This curve has n cusps.

4. Let us call an n-tuple (m1, . . . ,mn) of non-negative integers good if the product M =
(m1 + 1)(m2 + 1) · · · (mn + 1) divides (m1 + p)(m2 + p) · · · (mn + p) for all but a finite
number of primes p. Using the fact that binomial coefficients are integers, it is easy to
see that (0, 1, . . . , n − 1) and (1, 3, . . . , 2n − 1) are good for any n. We now re-write the
condition of being good in terms of M so that primes are not mentioned. For this we need
Dirichlet’s Theorem, which states that if a, b are integers with no common factors, then
there are infinitely many prime numbers p such that p ≡ a mod b. In the discussion below,
we exclude the good n-tuple (0, . . . , 0), whose M is 1.

Lemma 1. Given an n-tuple (m1, . . . ,mn), let M = (m1 + 1)(m2 + 1) · · · (mn + 1). Then
(m1, . . . ,mn) is good if and only if for each integer x ∈ {1, . . . ,M} which is co-prime to M ,
the product (m1 + x)(m2 + x) · · · (mn + x) is divisible by M .

Proof. Suppose that (m1, . . . ,mn) is good. Let x ∈ {1, . . . ,M} be co-prime to M . By
Dirichlet’s Theorem, there are infinitely many primes p such that p ≡ x mod M . Choose
any one of these p for which M divides (m1 + p)(m2 + p) · · · (mn + p). Then

(m1 + x)(m2 + x) · · · (mn + x) ≡ (m1 + p)(m2 + p) · · · (mn + p) ≡ 0 mod M,

which means that (m1 + x)(m2 + x) · · · (mn + x) is divisible by M .
Conversely, suppose that (m1 + x)(m2 + x) · · · (mn + x) is divisible by M for all

x ∈ {1, . . . ,M} which are co-prime to M . Let p > M be prime. Write p = aM + x, where
a, x are integers and 0 ≤ x < M . Then x ≥ 1, p ≡ x mod M , and x and M are co-prime
because p cannot divide M . So

(m1 + p)(m2 + p) · · · (mn + p) ≡ (m1 + x)(m2 + x) · · · (mn + x) ≡ 0 mod M,

which means that (m1 + p)(m2 + p) · · · (mn + p) is divisible by M . �

We now simplify the condition of the first lemma by reducing the condition to be
checked to one involving each prime factor of M :

Lemma 2. Given an n-tuple (m1, . . . ,mn), write M = qc11 · · · qcrr , where q1, . . . , qr are
distinct primes. Then (m1, . . . ,mn) is good if and only if, whenever qc is one of the qckk ’s,
for each x ∈ {1, . . . , qc} which is not divisible by q, the product (m1+x)(m2+x) · · · (mn+x)
is divisible by qc.

Proof. Suppose that (m1, . . . ,mn) is good, and let qc be one of the qckk ’s. Suppose
x ∈ {1, . . . , qc} is not divisible by q. By Dirichlet’s theorem again, there are infinitely
many primes p such that p ≡ x mod qc. Choose any one of these p for which M divides
(m1 + p)(m2 + p) · · · (mn + p). Then

(m1 + x)(m2 + x) · · · (mn + x) ≡ (m1 + p)(m2 + p) · · · (mn + p) ≡ 0 mod qc,

which means that (m1 + x)(m2 + x) · · · (mn + x) is divisible by qc.
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Conversely, suppose that (m1, . . . ,mn) satisfies the condition in this lemma. Let
x ∈ {1, . . . ,M} be co-prime to M , and let qc be one of the qckk ’s. Then x ≡ x′ mod qc for
some x′ ∈ {1, . . . , qc} which is not divisible by q. Hence

(m1 + x)(m2 + x) · · · (mn + x) ≡ (m1 + x′)(m2 + x′) · · · (mn + x′) ≡ 0 mod qc,

Thus (m1+x)(m2+x) · · · (mn+x) is divisible by each qckk , and hence byM . So (m1, . . . ,mn)
is good, by Lemma 1. �

Lemma 3. Let (m1, . . . ,mn) be good. Let q be a prime divisor of M . Then q ≤ n+ 1.

Proof. For j = 0, . . . , q − 1, let Sj = {i : 1 ≤ i ≤ n and mi ≡ j mod q}. Then {1, . . . , n}
is the union of the disjoint sets Sj . Suppose that there is a j 6= 0 such that Sj = ∅. Let
x = q − j ∈ {1, . . . , q − 1}. Then mi + x ≡ mi − j 6= 0 mod q for each i. Hence q does not
divide

∏n
i=1(mi+x). This contradicts Lemma 2. So Sj 6= ∅ must hold for j = 1, . . . , q−1,

and so n =
∑q−1
j=0 |Sj | ≥ q − 1. �

Lemma 4. Let (m1, . . . ,mn) be good, and, in the notation of Lemma 2, let qc be one of
the qckk ’s. Then, writing bxc for the largest integer m ≤ x,

c ≤
∞∑
k=0

⌊b n
q−1c
qk

⌋
. (1)

Proof. Fix q. Let Cq(n) denote the largest integer c ≥ 0 such that for some n-tuple
(m1, . . . ,mn) of non-negative integers, qc divides (m1 +x)(m2 +x) · · · (mn+x) for each x ∈
{1, . . . , qc} which is not divisible by q. Let Dq(n) denote the largest integer d ≥ 0 such
that for some n-tuple (m1, . . . ,mn) of non-negative integers, (m1 +x)(m2 +x) · · · (mn+x)
is divisible by qd for each integer x ≥ 0. It is evident that if n ≤ n′ then Cq(n) ≤ Cq(n′)
and Dq(n) ≤ Dq(n′). We first show that

Cq(n) ≤
⌊ n

q − 1
⌋

+D
(⌊ n

q − 1
⌋)
. (2)

To see this, let c = Cq(n), and let (m1, . . . ,mn) be an n-tuple of non-negative integers such
that qc divides (m1 +x)(m2 +x) · · · (mn+x) for each x ∈ {1, . . . , qc} which is not divisible
by q. For j = 1, . . . , q − 1, let Tj denote the set of i = {1, . . . , n} such that mj ≡ −j
mod q. Then the sets Tj are disjoint, and so n ≥

∑q−1
j=1 |Tj |. So we can choose a j such

that |Tj | ≤ n/(q − 1). If z ≥ 0 is an integer, let x ∈ {1, . . . , qc} satisfy x ≡ j + zq mod qc.
Then q does not divide x, and q divides mi +x if and only if i ∈ Tj . For each i ∈ Tj , write
mi = −j +m′iq, where m′i ≥ 1 is an integer. Then

qc
∣∣∣ n∏
i=1

(mi + x) =
∏
i∈Tj

(mi + x)×
∏
i 6∈Tj

(mi + x) =
∏
i∈Tj

(
q(m′i + z)

)
×
∏
i 6∈Tj

(mi + x)

Therefore
qc−|Tj |

∣∣∣ ∏
i∈Tj

(m′i + z),
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and so c− |Tj | ≤ Dq(|Tj |). Thus c ≤ |Tj |+Dq(|Tj |) ≤
⌊
n
q−1

⌋
+D

(⌊
n
q−1

⌋)
.

We next show that
Dq(n) ≤

⌊n
q

⌋
+D

(⌊n
q

⌋)
. (3)

The proof of this is similar to that of (2), except that now the sets Tj are defined for each
j ∈ {0, 1, . . . , q − 1}, and so at least one of them satisfies |Tj | ≤ n/q.

It is easy to see that Dq(1) = 0. So using the elementary fact⌊bmq c
qk

⌋
=
⌊
m

qk+1

⌋
,

we get (1) by repeated use of (2) and (3). �

We are now nearly ready to list the good n-tuples for n small. We make a few
observations in the next lemma which shortens the job.

Lemma 5.
(a) If (m1, . . . ,mn) is good, then so is any permutation of (m1, . . . ,mn).
(b) (m1, . . . ,mn) is a good n-tuple if and only if (0,m1, . . . ,mn) is a good n+ 1-tuple.

(c) If (m1, . . . ,mn) is good, then mi ∈ {0, 1} for some i.

Proof. (a) is obvious. In (b), notice that the M ’s of (m1, . . . ,mn) and of (0,m1, . . . ,mn)
are the same. If M divides (m1 + x) · · · (mn + x) for all x ∈ {1, . . . ,M} coprime to M ,
then it is certainly divides x(m1 + x) · · · (mn + x) for all such x. Conversely, if M divides
x(m1 + x) · · · (mn + x), and x ∈ {1, . . . ,M} is coprime to M , then clearly M divides
(m1 + x) · · · (mn + x). To prove (c), suppose that mi ≥ 2 for all i, and let x = M − 1.
Then x ∈ {1, . . . ,M} is coprime to M and by Lemma 1,

(m1 − 1) · · · (mn − 1) ≡ (m1 + x) · · · (mn + x) ≡ 0 mod M,

and so M divides (m1 − 1) · · · (mn − 1). But 1 ≤ (m1 − 1) · · · (mn − 1) < M , and so this
is impossible. �

Let us now list the good n-tuples for n ≤ 4. By Lemma 5(a), it is enough to list the
good n-tuples (m1, . . . ,mn) for which m1 ≤ · · · ≤ mn.

The case n = 1. By Lemma 5(c), the only possibilities are (m1) = (0) and (m1) = (1).
These are indeed good. In fact, (0, . . . , 0) and (1, . . . , 1) are good n-tuples for any n, the
second, by Lemma 2, because 2n divides (1 + x)n for any odd x.

The case n = 2. The pairs (m1,m2) = (0, 0) and (0, 1) are the only good pairs, one of
whose terms is 0, by Lemma 5(b) and the list of the case n = 1. Let (m1,m2) be good,
with 1 ≤ m1 ≤ m2. By Lemma 5(c), m1 = 1. By Lemma 3, the possible prime factors
of M = (m1 + 1)(m2 + 1) are q = 2 and q = 3. The sums in (1) of Lemma 4 when
(n, q) = (2, 2) and (n, q) = (2, 3) are 3 and 1, respectively. So M must divide 2331 = 24.
For M = 1, 2, 3, 4, 6, 8, 12 and 24, we list the possible factorizations M = (m1 + 1)(m2 + 1)
for which 1 = m1 ≤ m2. The corresponding (m1,m2) are (1, 1), (1, 2), (1, 3), (1, 5) and
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(1, 11). We check that these are all good by using Lemma 2. For instance, (1, 11) is good
because 8 divides (1+x)(11+x) for all x ∈ {1, 3, 5, 7} and because 3 divides (1+x)(11+x)
for all x ∈ {1, 2}.
The case n = 3. The triples (m1,m2,m3) = (0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 2), (0, 1, 3),
(0, 1, 5) and (0, 1, 11) are the only good triples, one of whose terms is 0, by Lemma 5(b)
and the list of the cases n = 1, 2. Let (m1,m2,m3) be good, with 1 ≤ m1 ≤ m2 ≤ m3. By
Lemma 5(c), m1 = 1. The possible prime factors of M = (m1+1)(m2+1)(m3+1) are q = 2
and q = 3, by Lemma 3. The sums in (1) of Lemma 4 when (n, q) = (3, 2) and (n, q) = (3, 3)
are 4 and 1, respectively, and so M must divide 2431 = 48. For M = 1, 2, 3, 4, 6, 8, 12, 16, 24
and 48, we list the possible factorizations M = (m1 + 1)(m2 + 1)(m3 + 1) for which
1 = m1 ≤ m2 ≤ m3. The corresponding (m1,m2,m3) are (1, 1, 1), (1, 1, 2), (1, 1, 3),
(1, 2, 3), (1, 1, 5), (1, 3, 5), (1, 2, 7) and (1, 1, 11). We check that using Lemma 2 that these
are all good except (1, 2, 7), for which 16 does not divide (1 + 3)(2 + 3)(7 + 3).

The case n = 4. The 4-tuples (m1,m2,m3,m4) = (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1),
(0, 0, 1, 2), (0, 0, 1, 3), (0, 0, 1, 5), (0, 0, 1, 11), (0, 1, 1, 1), (0, 1, 1, 2), (0, 1, 1, 3), (0, 1, 2, 3),
(0, 1, 1, 5), (0, 1, 3, 5), and (0, 1, 1, 11) are the only good 4-tuples, one of whose terms is 0,
by Lemma 5(b) and the list of the cases n = 1, 2, 3. Let (m1,m2,m3,m4) be good,
with 1 ≤ m1 ≤ m2 ≤ m3 ≤ m4. By Lemma 5(c), m1 = 1. The possible prime factors of
M = (m1 +1)(m2 +1)(m3 +1)(m4 +1) are q = 2, q = 3 and q = 5, by Lemma 3. The sums
in (1) of Lemma 4 when (n, q) = (4, 2), (4, 3) and (4, 5) are 7, 2 and 1, respectively, and soM
must divide 273251 = 5760. It is rather tedious to follow that procedure of the n = 3 case,
but it is very easy to write a short computer program based on Lemma 1 and Lemma 5(c),
which quickly finds that the following are the only good 4-tuples (m1,m2,m3,m4) with 1 ≤
m1 ≤ m2 ≤ m3 ≤ m4: (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 1, 5), (1, 1, 1, 11), (1, 1, 2, 2),
(1, 1, 2, 3), (1, 1, 2, 5), (1, 1, 2, 11), (1, 1, 3, 3), (1, 1, 3, 5), (1, 1, 3, 11), (1, 1, 5, 5), (1, 1, 5, 11),
(1, 1, 11, 11), (1, 2, 3, 4), (1, 2, 3, 9), (1, 3, 3, 5), (1, 3, 5, 7), (1, 3, 7, 29) and (1, 5, 7, 11).

5. First suppose that E is the interval [0,M ]. Let aj = jM/n for j = 0, 1, . . . , n. Then
n∏
j=0
j 6=`

|aj − a`| =
(M
n

)n
`! (n− `)! .

So to prove the statement in this case, is it enough to show that

`! (n− `)! >
( n

2e

)n
for ` = 0, 1, . . . , n.

We prove this by induction. It is certainly true for n = 1. Suppose that we have proved
it for n. Let ` ∈ {0, . . . , n+ 1}. If ` ≤ (n+ 1)/2, then n+ 1− ` ≥ (n+ 1)/2, and, by the
induction hypothesis,

`! (n+ 1− `)! ≥ n+ 1
2

`! (n− `)! > n+ 1
2

( n
2e

)n
.

If ` > (n+ 1)/2, then, by the induction hypothesis again,

`! (n+ 1− `)! = ` (`− 1)! (n− (`− 1))! >
n+ 1

2

( n
2e

)n
.
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So it is enough to show that

n+ 1
2

( n
2e

)n
>
(n+ 1

2e

)n+1

.

This is immediate from the well-known and easily derived inequality
(
1 + 1

n

)n
< e.

Now suppose that E is bounded set which is a disjoint union of intervals of total
length M . More generally, E can be any bounded Lebesgue measurable set of measure M .
Translating the set to the right or left if necessary, we may suppose that E ⊂ [0,∞), and
that inf E = 0. For x ≥ 0, let f(x) = m([0, x] ∩ E). Here m(S) denotes the Lebesgue
measure of a subset S of R, which, when S is a disjoint union of intervals, is simply the
sum of the lengths of these intervals. Then f(0) = 0, and f(x) = M for x sufficiently large.
Also, if x ≤ y, then f(x) ≤ f(y), and

f(y)− f(x) = m([0, y] ∩ E)−m([0, x] ∩ E) = m((x, y] ∩ E) ≤ m((x, y]) = y − x. (1)

The function f(x) is therefore continuous, and has image [0,M ]. For each j ∈ {0, 1, . . . , n},
choose xj such that f(xj) = jM/n. If j ≤ k, then (k − j)M/n = f(xk)− f(xj) ≤ xk − xj
by (1). Hence

n∏
j=0
j 6=`

|xj − x`| ≥
n∏
j=0
j 6=`

(
|j − `|M

n

)
,

which we have seen is greater than (M/2e)n. It remains to show that we can choose the
xj ’s so that, in addition, they are in E. The sets Sj = {x ≥ 0 : f(x) = jM/n} are closed
and bounded below by 0, because f(x) is continuous. So each Sj has a least element and
we first choose xj to be this least element. We claim that then each xj is in the closure Ē
of E. If j = 0, then xj = 0, which is in Ē because inf E = 0. If j > 0, then f(x) < jM/n
for x < xj , and so f((x, xj ] ∩ E) = f(xj)− f(x) > 0, so that in particular (x, xj ] ∩ E 6= ∅
for any x < xj . Hence xj ∈ Ē.

Finally, because we have shown that
∏n
j=0: j 6=` |xj−x`| is strictly greater than (M/2e)n,

if we replace each xj by a point yj sufficiently near xj , then
∏n
j=0: j 6=` |yj−y`| is still greater

than (M/2e)n. Since xj ∈ Ē, we can choose yj to be in E.

6. Let Ai = (xi, yi) and Bi = (ui, vi) for i = 1, 2, 3. Form the matrices

M =


x1 y1 1 0
x2 y2 1 0
x3 y3 1 0
0 0 0 1

 and N =


−2u1 −2v1 0 1
−2u2 −2v2 0 1
−2u3 −2v3 0 1

0 0 1 0

 .

An easy calculation shows that

MNT =


−2(u1x1 + v1y1) −2(u2x1 + v2y1) −2(u3x1 + v3y1) 1
−2(u1x2 + v1y2) −2(u2x2 + v2y2) −2(u3x2 + v3y2) 1
−2(u1x3 + v1y3) −2(u2x3 + v2y3) −2(u3x3 + v3y3) 1

1 1 1 0

 .
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In this matrix, add x2
i +y2

i times row 4 to row i, i = 1, 2, 3, and then u2
j+v2

j times column 4
to column j, j = 1, 2, 3. This of course does not change the determinant, and the matrix
becomes

(x1 − u1)2 + (y1 − v1)2 (x1 − u2)2 + (y1 − v2)2 (x1 − u3)2 + (y1 − v2)2 1
(x2 − u1)2 + (y2 − v1)2 (x2 − u2)2 + (y2 − v2)2 (x2 − u3)2 + (y2 − v2)2 1
(x3 − u1)2 + (y3 − v1)2 (x3 − u2)2 + (y3 − v2)2 (x3 − u3)2 + (y3 − v2)2 1

1 1 1 0

 ,

which is the matrix 
d2

1,1 d2
1,2 d2

1,3 1
d2

2,1 d2
2,2 d2

2,3 1
d2

3,1 d2
3,2 d2

3,3 1
1 1 1 0


of the question. Hence the determinant of the matrix in the question is that of MNT , and
so is det(M) det(N). Now det(M) = (x1y2 − x2y1) − (x1y3 − x3y1) + (x2y3 − x3y2) and
det(N) = −4((u1v2−u2v1)− (u1v3−u3v1)+(u2v3−u3v2)). Provided that A1, A2 and A3

are oriented in such a way that as we move from A1 to A2, then A2 to A3 and A3 back to A1

we are moving in an anti-clockwise direction, the quantity (x1y2−x2y1)− (x1y3−x3y1) +
(x2y3 − x3y2) is twice the area of the triangle 4A1A2A3. We can see this for example
by considering the cross product u × v of the vectors u = (x2 − x1) i + (y2 − y1) j and
v = (x3 − x1) i + (y3 − y1) j, which equals ck for c equal to the area of the parallelogram
with vertices 0, u, v and u + v. So c/2 equals the area of the triangle with vertices
0, u and v. So det(M) = 2Area (4A1A2A3). For the same reasons, assuming that also
4B1B2B3 is “positively oriented”, we have det(N) = −8Area (4B1B2B3). So the formula
in the question is proved, provided that the two triangles are positively oriented.

7. For i = 1, . . . , n, let ki denote the number of 1’s in the i-th row of our matrix A = (ai,j).
Let Si denote the set of ordered pairs (r, s) such that 1 ≤ r < s ≤ n and ai,r = ai,s = 1.
The hypothesis on A means that the sets S1, . . . , Sn are pairwise disjoint. Clearly |Si| =
ki(ki−1)/2 for each i, and there are n(n−1)/2 ordered pairs (r, s) such that 1 ≤ r < s ≤ n.
Hence

n∑
i=1

ki(ki − 1)
2

=
n∑
i=1

∣∣Si∣∣ =
∣∣∣ n⋃
i=1

Si

∣∣∣ ≤ n(n− 1)
2

.

The function f(x) = x(x − 1)/2 satisfies f ′′(x) = 1 > 0, and so is convex on R. Hence
f(t1x1 + · · · + tnxn) ≤ t1f(x1) + · · · + tnf(xn) if t1, . . . , tn ≥ 0 and t1 + · · · + tn = 1. In
particular, taking xi = ki and ti = 1/n for each i, we get

k̄(k̄ − 1)
2

≤ 1
n

n∑
i=1

ki(ki − 1)
2

for k̄ = (k1 + · · · + kn)/n. Hence k̄(k̄ − 1) ≤ n − 1. So k̄ lies between the two roots of
x2 − x− (n− 1) = 0, and therefore

k̄ ≤
1 +

√
1 + 4(n− 1)

2
=

1 +
√

4n− 3
2

.
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The total number N of zeroes in A is k1 + · · ·+ kn = nk̄, and so

N ≤ n(1 +
√

4n− 3 )
2

.

This is a improvement of the estimate N ≤ n
√

2n− 1 in the question.

8. We show that the desired least common multiple is

Q(t) =
n∏
j=1

(tj − 1).

To see this, let us first factorize Q(t) over C. Each factor tj − 1 is the product of the j
distinct factors t − α, where α = e2πri/j , r = 0, 1, . . . , j − 1. So each α is a root of unity,
that is, αk = 1 for some integer k ≥ 0. Furthermore, k can be taken less than or equal
to n. Recall that α is called a primitive k-th root of unity if αk = 1 and if α` = 1 holds
for no integer ` ≥ 0 such that ` < k. In this case, we can write α = e2πνi/k for some
k ≥ 1, and some ν ∈ {0, . . . , k − 1} with gcd(ν, k) = 1 (for example, if α = 1, then k = 1
and ν = 0). Suppose that α = e2πνi/k is a primitive k-th root of unity. Then αj = 1 if
and only if k divides j. So when j ∈ {1, . . . , n}, t− α is a factor of tj − 1 if and only if k
divides j; that is, for j = k, 2k, . . . ,mk, where m = bn/kc. Hence the multiplicity of t− α
in Q(t) is bn/kc. Thus

Q(t) =
n∏
k=1

( ∏
α primitive

k−th root of 1

(t− α)
)bn/kc

. (1)

Now Q(t) is divisible by all the polynomials Pn1,...,nr (t) = (tn1 − 1) · · · (tnr − 1), where
n1, . . . , nr are positive integers and n1 + · · ·+nr = n. For if α ∈ C is a root of Pn1,...,nr (t),
then α is clearly a root of unity. If α is a primitive k-th root of unity, then tnj −1 contains
a single factor t − α for each j such that k divides nj . Note that k ≤ nj for each such j.
If k divides nj for m j’s, then mk is at most the sum of these nj ’s and so mk ≤ n. So the
multiplicity of t−α in Pn1,...,nr (t) is at most bn/kc. It follows that Pn1,...,nr (t) divides Q(t).

Now let F (t) be any polynomial which is divisible by all the Pn1,...,nr (t). For k ∈
{1, . . . , n}, let m = bn/kc, and let (n1, . . . , nr) consist of m k’s and (if mk < n) one
n−mk. Then Pn1,...,nr (t) = (tk − 1)m(tn−mk − 1) must divide F (t). But this Pn1,...,nr (t)
is divisible by (t− α)m, and so F (t) must be too. In view of (1), we see that Q(t) divides
F (t). So Q(t) is the least common multiple of the polynomials Pn1,...,nr (t).

9. Recall that a function f(x, y) of two variables is called differentiable at (x0, y0) if
(a) there is a δ0 > 0 such that f(x, y) is defined at least on the square of (x, y)’s satisfying
|x− x0| < δ0 and |y − y0| < δ0, and (b) we can write

f(x, y) = f(x0, y0) +A(x− x0) +B(y − y0) + ε1(x, y)(x− x0) + ε2(x, y)(y − y0),

where A,B are constants and where ε1(x, y) and ε2(x, y) are two functions which tend to
zero as (x, y)→ (x0, y0). Recall that ε1(x, y)→ 0 as (x, y)→ (x0, y0) means that if ε > 0
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is given, there is a δ > 0 such that |ε1(x, y)| < ε whenever |x− x0| < δ and |y− y0| < δ. If
f is differentiable at (x0, y0), then the A and B above are the partial derivatives fx(x0, y0)
and fy(x0, y0), respectively. The following fact is well-known:

Lemma 1. Suppose that the partial derivative fx(x, y) exists at each point of a square
centred on (x0, y0), and that fx(x, y) is continuous at (x0, y0). Suppose also that the partial
derivative fy(x, y) exists at (x0, y0). Then f is differentiable at (x0, y0). The same is true
if we interchange the roles of fx(x, y) and fy(x, y).

Proof. By the hypotheses, there is a δ > 0 such that f(x, y) is defined and fx(x, y) exists
if |x− x0| < δ and |y − y0| < δ. Write

f(x, y) = f(x0, y0) +
(
f(x, y)− f(x0, y)

)
+
(
f(x0, y)− f(x0, y0)

)
.

By the Mean Value Theorem, for each x, y such that |x − x0| < δ and |y − y0| < δ,
there is a point ξ (depending on y) between x and x0 such that f(x, y) − f(x0, y) =
fx(ξ, y)(x − x0). By continuity of fx(x, y) at (x0, y0), if ε > 0 is given, there is a δ1 > 0
such that |fx(x, y) − fx(x0, y0)| < ε if |x − x0| < δ1 and |y − y0| < δ1. So we can
write f(x, y) − f(x0, y) = fx(x0, y0)(x − x0) + ε1(x, y)(x − x0), where ε1(x, y) → 0 as
(x, y)→ (x0, y0).

By definition of fy(x0, y0), if ε > 0 is given, there is a δ2 > 0 such that∣∣∣f(x0, y)− f(x0, y0)
y − y0

− fy(x0, y0)
∣∣∣ < ε

if 0 < |y − y0| < δ2. Hence f(x0, y) − f(x0, y0) = fy(x0, y0)(y − y0) + ε2(y)(y − y0) for a
function ε2(y) which tends to 0 as y → y0.

Combining the above steps, we have

f(x, y) = f(x0, y0) +
(
f(x, y)− f(x0, y)

)
+
(
f(x0, y)− f(x0, y0)

)
= f(x0, y0) + fx(x0, y0)(x− x0) + ε1(x, y)(x− x0)

+ fy(x0, y0)(y − y0) + ε2(y)(y − y0),

and so f is differentiable at (x0, y0). �

Lemma 2. Suppose that f is defined on the square |x−x0| < δ0 and |y−y0| < δ0. Suppose
that the partial derivatives fx(x, y) and fy(x, y) exist on this square and are differentiable
functions at (x0, y0). Then fx,y(x0, y0) = fy,x(x0, y0).

Proof. By the hypotheses, we can write the equations

fx(x, y) = fx(x0, y0) +A(x− x0) +B(y − y0) + ε1(x, y)(x− x0) + ε2(x, y)(y − y0),

fy(x, y) = fy(x0, y0) + C(x− x0) +D(y − y0) + ε3(x, y)(x− x0) + ε4(x, y)(y − y0),

for constants A,B,C,D and functions εj(x, y) which tend to 0 as (x, y) → (x0, y0). We
have A = fx,x(x0, y0), B = fx,y(x0, y0), C = fy,x(x0, y0) and D = fy,y(x0, y0), and so
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in particular we know that all these second order partial derivatives exist. By replacing
f(x, y) by f(x, y) − 1

2

(
A(x − x0)2 + D(y − y0)2

)
, we can assume that A = D = 0. By

the Mean Value Theorem, we can write f(x, y) − f(x0, y) = fx(ξ, y)(x − x0) for some ξ
between x and x0. So

f(x, y)− f(x0, y)

=
[
fx(x0, y0) +A(ξ − x0) +B(y − y0) + ε1(ξ, y)(ξ − x0) + ε2(ξ, y)(y − y0)

]
(x− x0).

(1)
Also, by the Mean Value Theorem, for some η between y and y0, we have

f(x0, y) = f(x0, y0) + fy(x0, η)(y − y0)

= f(x0, y0) +
[
fy(x0, y0) +D(η − y0) + ε4(x0, η)(η − y0)

]
(y − y0).

(2)

When we substitute (2) into (1) and remember that A = D = 0, we find that

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y− y0) +B(x− x0)(y− y0) +E(x, y),

where

E(x, y) =
[
ε1(ξ, y)(ξ − x0) + ε2(ξ, y)(y − y0)

]
(x− x0) + ε4(x0, η)(η − y0)(y − y0).

If ε > 0, there is a δ > 0 such that |εj(x, y)| < ε for each j if |x− x0| < δ and |y − y0| < δ.
Since |ξ − x0| ≤ |x− x0| and |η − y0| ≤ |y − y0|, we see that

|E(x, y)| ≤ ε
(
|x− x0|2 + |x− x0| |y − y0|+ |y − y0|2

)
if |x− x0| < δ and |y − y0| < δ.

Similarly, starting from f(x, y)−f(x, y0) = fy(x, η)(y−y0) and fy(x, η) = fy(x0, y0)+
C(x−x0)+D(η−y0)+ε3(x, η)(x−x0)+ε4(x, η)(η−y0), and writing f(x, y0) = f(x0, y0)+
fx(ξ, y0)(x− x0) = f(x0, y0) +

(
fx(x0, y0) +A(ξ− x0) + ε1(ξ, y0)(ξ− x0)

)
(x− x0), we find

that

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) +C(x− x0)(y − y0) + F (x, y),

where
|F (x, y)| ≤ ε

(
|x− x0|2 + |x− x0| |y − y0|+ |y − y0|2

)
if |x− x0| < δ and |y − y0| < δ. Subtracting these two expressions for f(x, y), we get

(B − C)(x− x0)(y − y0) = F (x, y)− E(x, y).

If we now take |x − x0| = |y − y0| < δ and divide both sides of the last formula by
(x− x0)(y − y0), we see that |B − C| ≤ 6ε. But ε > 0 was arbitrary, and so B = C. �

Lemma 3. Suppose that the conditions of Problem 9 are satisfied. That is, suppose that
(a) for some δ0 > 0 the partial derivatives fx(x, y), fy(x, y), fx,x(x, y) and fy,y(x, y) all
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exist if |x − x0| < δ0 and |y − y0| < δ0, and (b) fx,x(x, y) and fy,y(x, y) are continuous
at (x0, y0) and (c) fx,y(x0, y0) and fy,x(x0, y0) exist. Then the conditions of Lemma 2 are
satisfied, and so fx,y(x0, y0) = fy,x(x0, y0).

Proof. The function fx is differentiable at (x0, y0) because (i) fx,x(x, y) =
(
fx
)
x
(x, y) ex-

ists in a square about (x0, y0) and fx,x(x, y) is continuous at (x0, y0), and (ii) fx,y(x0, y0) =(
fx
)
y
(x0, y0) exists. Similarly, applying the last sentence of Lemma 1, the function fy is

differentiable at (x0, y0) because (i) fy,y(x, y) =
(
fy
)
y
(x, y) exists in a square about (x0, y0)

and fy,y(x, y) is continuous at (x0, y0), and (ii) fy,x(x0, y0) =
(
fy
)
x
(x0, y0) exists. �

10. Let An denote the number of “alternating” permutations of 1, 2, . . . , n, i.e., those for
which 1 comes before 2, 2 after 3, 3 before 4, etc. The first few of these numbers are A1 = 1,
A2 = 1, A3 = 2 and A4 = 5. It is convenient to also define A0 = 1. The condition on
alternating permutations may be stated in this way: we require that 2k+1 comes before 2k
for k = 1, . . . , b(n−1)/2c and that 2k+ 1 comes before 2k+ 2 for k = 0, 1, . . . , b(n−2)/2c.
We consider the cases n odd and n even separately.

If n = 2m+1 is odd, then the last letter in any alternating permutation must be even,
2k say. Amongst the remaining letters, the letters 1, . . . , 2k − 1 must form an alternating
sequence, and so must the letters 2k + 1, . . . , 2m+ 1. Taking any of the

(
2m

2k−1

)
choices of

2k−1 positions from the first 2m, any of the A2k−1 alternating permutations of 1, . . . , 2k−1,
and any of the A2m−2k+1 alternating permutations of 2k + 1, . . . , 2m + 1, we obtain an
alternating permutation of 1, . . . , 2m+ 1 with last letter 2k. It follows that

A2m+1 =
m∑
k=1

(
2m

2k − 1

)
A2k−1A2(m−k)+1. (1)

Form the generating function A(t) =
∑∞
m=0A2m+1t

2m+1/(2m+ 1)!. In terms of A(t), (1)
says that

A(t)2 =
∞∑
m=1

A2m+1
t2m

(2m)!
= A′(t)− 1.

Since A(0) = 0, it is elementary that A(t) = tan(t).
Similarly, if n = 2m is even, then the last letter in any alternating permutation must

still be even, 2k say. In the same way, we find that

A2m =
m∑
k=1

(
2m− 1
2k − 1

)
A2k−1A2(m−k). (2)

Form the generating function B(t) =
∑∞
m=0A2mt

2m/(2m)!. In terms of A(t) and B(t),
(2) says that

A(t)B(t) =
∞∑
m=1

2mA2m
t2m−1

(2m)!
= B′(t).

Since B(0) = A0 = 1, it is elementary that B(t) = sec(t).
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Hence the generating function of all the An’s is given by

∞∑
n=0

An
tn

n!
= tan(t) + sec(t).

The numbers An are therefore closely related to various well-known (but complicated)
numbers. For example,

A2m−1 =
(−1)m+122m(22m − 1)B2m

2m
,

where Bn is the n-th Bernoulli number. This formula can be derived from the generating
function t/(et − 1) =

∑∞
n=0Bnt

n/n! for the Bernoulli numbers.
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