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Introduction

Let p > 1 and consider nonlinear elliptic equations in divergence form
— div (A(|x|) |[VulP~2Vu) + b(x) h(u) =0 in B* := B\ {0}, (1)

where B; denotes the open unit ball centred at 0 in RN (N > 2).
Let A € C1(0,1] be a positive function such that
/
lim tA(t)
t—0+ .A(t)

=9 ek (2)

This means that L4(t) = A(t)/t” is a positive C1(0, 1] function satisfying
lim;_o+ tL'(t)/L(t) = 0. In particular, L is a slowly varying function at 0.

Assumption A. Let b€ C(B1\ {0}) be positive with limy_o iy = 1

and h € C[0,00) be a positive non-decreasing function on (0, 00) such
that h(t)/tP~! is bounded for small t > 0.
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On Regular Variation Theory

Definition 1

A positive measurable function L defined on an interval (0, c] for some
¢ > 0 is called slowly varying at (the right of) zero if

L
lim M =1 for every A > 0.
t—0 L(t)

A function f is called regularly varying at 0 with real index p, or
f € RV,(0+) in short, if f(t)/t” is slowly varying at 0.

Example 2
Non-trivial examples of slowly varying functions L for small ¢t > 0:

(a) the logarithm log(1/t), its m iterates log,,(1/t) defined as
log log,,_1(1/t) and powers of log,,(1/t) for any integer m > 1;

(b) exp((log(1/t))*) with a € (0,1).
(c) exp (—(log(1/1))*3 cos((log(1/1))'/?)).
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Definition of solution

Definition 3

A function u € C}(B*) is said to be a solution (sub-solution) of (1) if for
all functions (non-negative functions) v € C}(B*), we have

A(|x|)|Vu|P2vU.v¢dx+/ b(x)h(u)pdx =0 (<0). (3)

By B:
Let wy = vol(By) and @ be given by
1 RN
d(x) = 1//|X| <A(t)> dt for every x € B*. (4)

(Nuwp )2/
(

Assumption B. Let (2) and Assumption A hold. Let lim,_o ®(r) = oo,
bo € RV,(0+) and h € RVg(o0) with q+1>p > 19 —o0.

We can see ® as the fundamental solution of
— Ay p® = —div (A(|x]) |V<D|P_2V<D) =dp in D'(By) (5)

with homogeneous Dirichlet boundary condition.
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Main results: C.—Cirstea

A positive solution of (1) is said to have a weak singularity at 0 if
u(x)/P(|x|) converges to a positive number as |x| — 0.

Theorem 4 (Existence of weak singularities, C.—Cirstea)

Let Assumption B hold. Eq. (1) admits a positive solution with a weak
singularity at 0 if and only if b(x)h(®) € L*(By ), or in other words,

/0+ L po(r)h(S(r)) dr < . (6)

From Assumption B, we have p < N + 1. We set

(N+o)p—1) . :
= it N+ and g =00 if p= N + 9.
q Nio_p TP<N+Uandq.=coifp + (7)

Q If p= N+ 9, then (6) holds automatically for any g < cc.

@ If p< N+ and g # qx, then (6) holds iff g < g.. If Ly =Lp=1
and h(t) = t%(Int)* for t > 0 large, then (6) holds iff & < —1.
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Main results: C.—Cirstea

Theorem 5 (Removability, C.—Cirstea)

Let Assumption B hold. If b(x)h(®) & L'(By,), then p < N+, q > q.
and every positive solution of (1) can be extended as a positive
continuous solution of (1) in B;.

Remark 1
© By applying Theorem 5 with A = b =1 and h(t) = t9, then we
recover the removability result of Brezis—Véron (1980) (for p = 2)
and Vazquez-Véron (1980/1981) (for 1 < p < N).
@ Theorem 5 in the case A = 1 gives a sharp version of Theorem 1.3 in
Cirstea—Du (2010).
© The proof of Theorem 5 is crucially based on understanding the

solutions with strong singularities and it uses techniques in Cirstea
(Memoirs AMS, 2014).
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Solutions with strong singularities

If (6) and Assumption B hold, we prove that 3 positive solutions of (1)
satisfying lim o u(x)/®(x) = o0.
Case 1: g < g.. We define i(r) for r > 0 small by

/‘("’) [th((i:)];l) - /0 [Ml i({((:” " )

where M is given by

p+o—1
(N+o)p—1)—(N+9—p)g

My =

Case 2: g = g. < o (for p < N + ). We need extra information:
{either (a) t — Lu(e") is regularly varying at oo,

or (b) t — [LA(e*t)]_% Lp(e™ ") is regularly varying at oco.
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Solutions with strong singularities

We introduce F; : (0,00) — (0,00) and M, > 0 as follows

*ie) N-1
Fi(s) = /0 ENLho(£) H(D(£)) dE for s > 0,

Nwpn(o — 9 + p) (10)
WN\O — P
My = 0.
2 N+9—p >
For any r > 0 small, we define i(r) of the following form
a(r) == (r) [I\/I2F1(<D(r))]_q*—lp+1 if (9)(a) holds,
(11)

/ﬂ(r) [MzFl(t)]ﬁ dt := &(r) if (9)(b) holds.
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Solutions with strong singularities

Theorem 6 (Classification, C.—Cirstea)

Let Assumption B and (6) hold. Then for every positive solution u of (1),
exactly one of the following cases occurs:

(i) u can be extended as a positive continuous solution of (1) in By;

(ii) limy 0 u(x)/®(x) = X € (0,00) and, moreover, u verifies
— A pu+ b(x)h(u) = NP~ in D'(By). (12)

(iii) u(x) ~ a(|x|) as |x| — 0, where i is given by (8) if g < g« and by
(11) when q = g, < oo and (9) holds.

Remark 2

© Theorem 6 gives a sharp version of Theorem 1.1 in Cirstea—Du (2010)
(where A =1).
© Theorems 4, 5 and 6 extend the optimal results in

Brandolini—Chiacchio—Cirstea—Trombetti (2013) (p =2, b =1,
h(t) = t9).

Ting-Ying Chang (2014) 1st October, 2014 10 / 29




Sketch of proofs

Crucial ingredients

Lemma 7 (A priori estimates)

Let H(t fo s)ds. For any ry € (0,1/2), there exists a constant
c= c( ) >0 s.t. for every positive (sub-)solution of (1), we have
o dt b(x)
c|x]| ( ) for all 0 < |x| < rp. (13)
/(x) {/ ‘)

Lemma 8 (A spherical Harnack-type inequality)

Fix ro € (0,1/2). There exists a positive constant K (depending on p, N
and ry) such that for every positive solution u of (1), we have

max u(x) < K min u(x) forall0 < r < ry/2. (14)

\x\:r |x|:r
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Sketch of proofs

Lemma 9 (A regularity result)

Fix ro € (0,1/4) and 6 > 0. Let g be a positive continuous function on
(0,1) such that g € RV_s5(0+). Suppose that u is a positive solution of
(1) and Gy is a positive constant such that

0 <u(x) < Ggl(lx]) for0 < |x| < 2n. (15)

Then there exist positive constants C > 0 and « € (0,1) such that

[Vu(x)] < Cg(| ||) and |Vu(x)—Vu(x)| < C i(“l)ﬂo)‘ x —x'|* (16)

for any x, x' in RN satisfying 0 < |x| < || < ro.
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Sketch of proofs

Corollary 10

Assume that u is a positive solution of (1) such that lim|,|_,q u(x) = oo.
Then, for every € € (0,1), there exists r. € (0,1) such that the equation

— DAy pv+ bo(|x[)Lu(v)v? =0 in B} := B, \ {0} (17)
has a positive solution v, satisfying

(1-€u<ve<(1+€u inB;.

Corollary 11

Let r. € (0,1) be arbitrary and v be a positive solution of (17). Then
there exist two positive radial solutions of (17) in B Jor SAY Vi and v,
such that

Klv<v,.<v<v'<Kv in 82/2, (18)

where K > 1 is a sufficiently large constant.
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Sketch of proofs
Theorem 12 (Strong singularities)

Let Assumption B and (6) hold. If u is any positive solution of (1) with a
strong singularity at 0, then u(x) ~ d(|x|) as |x| — 0, where i is given by
(8) if g < g« and by (11) when q = g, < oo and and (9) holds.

Proposition 1 (Case g < q.)

For any positive radial solution v of (17) with a strong singularity at 0, we
have v(r) ~ ii(r) as r — 0", where ii is defined by (8).

We adapt ideas from Cirstea—Du (2010, JFA). We first show the following.
Lemma 13 (Case g < q.)

Let f be a regularly varying function at 0 with index (.
(a) Ifpu < —(p+0o—1)/(qg—p+1), then we have lim, o+ v(r)/f(r) =0.
(b) Ifu>—(p+0—1)/(q—p+1), then lim,_o+ v(r)/f(r) = cc.
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Sketch of proofs

We next construct a local family of sub-super-solutions of (17). Let
0 = Mi(p—1). Fix no € (0,1) small. For each n € [0,70], we define

Vi (r) = Cin[ﬁ(r)]li” for r € (0,1),

where (4, is a positive constant given by
1
Cop = [(L£n)P (1 E£n0)] 7P, (19)

Lemma 14 (Case g < q.)

For every € € (0,1) small, there exists r. € (0,1) such that (1 — €)v_, and
(1 + €)vy, is a sub-solution and super-solution of (17) in By, respectively,
for every n € [0, no].
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Sketch of proofs

By Lemma 13, we find that

v(r)

im ) 0 and lim

r—0+ vy (r) r—0+ V_p(r) - (20)

Notice that (1 + €)v,(r) + v(rc) and v(r) + i(r.) are super-solutions of
(17) in B} (0). Then by the comparison principle,
v(r) < (1 +€)vy(r)+v(re) and v(r)+i(re) > (1 —e€)v_y(r) (21)
for all 0 < r < r.. By letting n — 0T in (21), we have
v(r) <A +e)i(r) +v(r) and v(r)+id(re) > (1-€)a(r)  (22)
for all 0 < r < r.. By letting r — 0T in (22), we conclude that

1— e <timinf A7) < im sup —
r—0t d(r) = o+ d(r)

<l+e (23)

Finally, we pass to the limit with € — 0 in (23).
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Sketch of proofs

Proposition 2 (Critical case g = g, for p < N + )

If v is a positive radial solution of (17) with a strong singularity at 0 and
(9) holds, then v(r) ~ ii(r) as r — 0", where i is defined by (11).

Main ideas in the proof:
We apply the change of variable y(s) = v(r) with s = ®(r) and arrive at

P2 d%y  (Nwy)P T et

Y2 = W S A b L) D) (24)

ds

for s > 0. After many hidden analyses, we have that

1 _ s(dy/ds)

Z < < C"+2 Vs> s large. 25
2 y(s) %)
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Sketch of proofs
v(r)

v(r) _
Step 1: Show that 0 < llrrlcl)rlf i(r) < Ilgzﬂp i(r)
Define Ei(r) and Ex(r) for r € (0,1) as follows

(N7 7 bo(r) and Eo(r) := [La(r)] 7T Lu(r). (26)
Using (25) into (24), we find positive constants ¢; and ¢, so that

El(l’) =

dy:| —Qqx+p—2 d2

QB S L) 5" < | 9 < o E(07(s) Lily) s

ds
(27)
for all s > sg. For some £ > 0, we obtain that
Ei(r) ~ L[d(r)] " L Ex(r) asr—07T. (28)

Hence, using (28), 3 positive constants ¢z and ¢ s.t. Vs > sp

dy} —qx+p—2 d2

> @S?END 1)) L(y)-| (29)

ZE@ L) < |
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Sketch of proofs

Case 1: Assume that (9)(a) holds.
Then, using Iny(s) ~ Ins, we get that

La(y(s)) ~ Lu(s) ~ h(s)/s% ass— oo. (30)

So, from (27) and (30), there exist positive constants ¢; and & such that

< &E(P71(s)) h(s) for s > sp.

ds? =
(31)
Using that y’(s) — oo as s — oo and integrating (31), we obtain that

GEL(P7Y(s)) h(s) < [ig] gy

] < ¢ Fi(s) forall s > sp, (32)

& Fi(s) < [ds

where ¢5 and cg are positive constants, whilst Fi(s) is defined by

oo o—1(s)
Fi(s) i=/s E1(®7(1)) h(t )dtZ/o " ho(€) h((€)) €. (33)
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Sketch of proofs

From (25) and (32), 3 positive constants d; and d> such that

di [Fl(s)]_"*’l"Jrl < y(ss) <d [F1(S)]_q**lp+1 for all s > sp,

or, equivalently, for every r € (0,®1(sp)), it holds

o [F(O()] 771 < o) < A 5.

~—

Hence, using the definition of 7 in (11), we conclude Step 1.

Ting-Ying Chang (2014) 1st October, 2014

20 / 29



Sketch of proofs

Case 2: Assume that (9)(b) holds.
Then, using that In®~1(s) ~ In®~1(y(s)) as s — oo, we obtain that

[La@ 1SN 7 TLo(®72(s)) ~ [La(@ Ly ()] # T La(@71(x(5)))
as s — 00. This, jointly with (28), gives that
e E(OTI((5))
E(071(5) ~ B0 y(s) ~ T )
where E; and E; are defined by (26). From (25), (29) and (34), 3 positive
constants d3 and dj such that

—Qqx+p—2 2
BEON NG < | TGS < RO ) )

for all s > sp. With F; as defined in (33), this gives that

as s — 00, (34)

1 y(s) 1
ldb(q. —p+ 1)) 5 < ( / [Fl(t)]q**’“dt> < [dy(q. — p+ 1)

(s0)

for every s > sp. Jointly with the definition of & in (11), we thus conclude

Ctan 1
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Sketch of proofs
Step 2: Construction of sub-super-solutions for (17).

Fix 1o € (0,1) small. Using M, in (10), we define C4, by

1 1
My \&n (g« — p+1)Nwy | =0
= — = for all .
Cay <1i77) [ | or all n € [0,m0]. (35)

If (9)(a) holds, then for any 1 € [0, 70], we define v, as follows

o(r) )
V() = / [ConFu(E)] 5551 dt for any r € (0,0 (s0)), (36)
S0

where sy > 0 is fixed large enough and F; is given by (33).
If, in turn, (9)(b) is satisfied, we introduce v4,, in the next identity

Vin(r) 1+n
/ [CopFr(t)] o=+ dt = ®(r) for any r > 0 small, (37)
C

where ¢ > 0 is a large constant such that ®~1(c) < 1.
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Sketch of proofs

Lemma 15

For every € € (0,1) small, there exists r. € (0,1) such that (1 — €)v_, and
(1 + €)vy, is a sub-solution and super-solution of (17) in B}, respectively,
for every 1 € [0, no].

Step 3: Proof of Proposition 2 concluded.

In either Case 1 (that is, (9)(a) holds) or Case 2 (when (9)(b) holds), by
using the definitions of 7 and v4,, we infer that

im 2 0 and im0

= f e (0 . 38
r—0+ vp(r) r—0+ V_p(r) o0 for every 1 € (0,7o] (38)

From Step 1 and (38), we regain (20). Following the proof of
Proposition 1, we obtain (21)—(23), proving that v(r) ~ i(r) as r — 0.
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Example
Assume that

A(t) ~ t%(In(1/t))* ast—0 for somea € R

b(x) ~ |x|7(In(1/|x]))? as |x| = 0 for some 3 € R

h(t) ~ t9exp(—(logt)”) ast— oo forsomeqg>p—1,ve(0,1).
(39)

Let u be any positive solution of (1).
(A) If p—1< g < g* then exactly one of the following occurs as
|x| = 0:
(i) u can be extended as a positive continuous solution of (1) in the whole
ball By, that is lim|, o u(x) € (0,00) and (3) holds for every
¢ € Cg(Bl)
(ii) u has a weak singularity at 0, that is lim|,|_,o u(x)/®(x) = A € (0, 00)
and, moreover, u verifies

— A pu+ b(x)h(u) = NP5 in D'(By). (40)
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Example

(iii) w has a strong singularity at 0 and moreover, we have

1
1\ —etB 1\% T g—ptL
u(x) ~ Mll\/lé’ log m exp <— (M‘,T1 log 7|> ) \X\P+‘77§ as |x| — 0. (41)

where M3 = (%).

(B) If g = g, then the conclusions above hold except for (41) which is
replaced by

1
M§—1+V pto—1 1\ —etB—vil i 1\" b v —pT1
u(x) ~ — | log — exp | — [ M3 " log — |x] as |x| —
v N+9-—p [x] |x]

(42)

(C) If g > g, then only case (A)(i) occurs.
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