Singular solutions for divergence-form elliptic equations involving regular variation theory¹

Ting-Ying Chang

School of Mathematics and Statistics The University of Sydney

WOMASY - Geometric and Harmonic Analysis meets PDE University of Sydney

1st October, 2014

4 D > 4 A > 4 B > 4 B > B 9 Q C

¹This is joint work with Florica C. Cîrstea.

- Introduction
- On Regular Variation Theory
- Oefinition of solution
- Main results: C.-Cîrstea
- 5 Solutions with strong singularities
- 6 Sketch of proofs
- Example
- 8 Bibliography

Let p > 1 and consider nonlinear elliptic equations in divergence form

$$-\operatorname{div} (\mathcal{A}(|x|) |\nabla u|^{p-2} \nabla u) + b(x) h(u) = 0 \quad \text{in } B^* := B_1 \setminus \{0\}, \quad (1)$$

where B_1 denotes the open unit ball centred at 0 in \mathbb{R}^N ($N \geq 2$). Let $A \in C^1(0,1]$ be a positive function such that

$$\lim_{t \to 0^+} \frac{t \mathcal{A}'(t)}{\mathcal{A}(t)} = \vartheta \in \mathbb{R}.$$
 (2)

This means that $L_{\mathcal{A}}(t)=\mathcal{A}(t)/t^{\vartheta}$ is a positive $C^1(0,1]$ function satisfying $\lim_{t\to 0^+}tL'(t)/L(t)=0$. In particular, L is a slowly varying function at 0.

Assumption A. Let $b \in C(\overline{B_1} \setminus \{0\})$ be positive with $\lim_{|x| \to 0} \frac{b(x)}{b_0(|x|)} = 1$ and $h \in C[0,\infty)$ be a positive non-decreasing function on $(0,\infty)$ such that $h(t)/t^{p-1}$ is bounded for small t > 0.

Definition 1

A positive measurable function L defined on an interval (0, c] for some c > 0 is called *slowly varying at (the right of) zero* if

$$\lim_{t\to 0} \frac{L(\lambda t)}{L(t)} = 1 \text{ for every } \lambda > 0.$$

A function f is called *regularly varying at* 0 *with real index* ρ , or $f \in RV_{\rho}(0+)$ in short, if $f(t)/t^{\rho}$ is slowly varying at 0.

Example 2

Non-trivial examples of slowly varying functions L for small t > 0:

- (a) the logarithm $\log(1/t)$, its m iterates $\log_m(1/t)$ defined as $\log\log_{m-1}(1/t)$ and powers of $\log_m(1/t)$ for any integer $m \ge 1$;
- (b) $\exp((\log(1/t))^{\alpha})$ with $\alpha \in (0,1)$.
- (c) $\exp(-(\log(1/t))^{1/3}\cos((\log(1/t))^{1/3}))$.

Definition 3

A function $u \in C^1(B^*)$ is said to be a *solution* (sub-solution) of (1) if for all functions (non-negative functions) $\psi \in C_c^1(B^*)$, we have

$$\int_{B_1} \mathcal{A}(|x|) |\nabla u|^{p-2} \nabla u \cdot \nabla \psi \, \mathrm{d}x + \int_{B_1} b(x) h(u) \, \psi \, \mathrm{d}x = 0 \quad (\leq 0). \tag{3}$$

Let $\omega_N = \operatorname{vol}(B_1)$ and Φ be given by

$$\Phi(x):=\frac{1}{(N\omega_N)^{1/(p-1)}}\int_{|x|}^1\left(\frac{t^{1-N}}{\mathcal{A}(t)}\right)^{\frac{1}{p-1}}\,dt\quad\text{for every }x\in B^*. \tag{4}$$

Assumption B. Let (2) and Assumption A hold. Let $\lim_{r\to 0} \Phi(r) = \infty$, $b_0 \in RV_{\sigma}(0+)$ and $h \in RV_{q}(\infty)$ with $q+1 > p > \vartheta - \sigma$.

We can see Φ as the fundamental solution of

$$-\Delta_{\mathcal{A},p}\Phi := -\operatorname{div}\left(\mathcal{A}(|x|)|\nabla\Phi|^{p-2}\nabla\Phi\right) = \delta_0 \text{ in } \mathcal{D}'(B_1)$$
 (5)

with homogeneous Dirichlet boundary condition.

Ting-Ying Chang (2014) 1st October, 2014 5 / 29

A positive solution of (1) is said to have a *weak singularity* at 0 if $u(x)/\Phi(|x|)$ converges to a positive number as $|x| \to 0$.

Theorem 4 (Existence of weak singularities, C.-Cîrstea)

Let Assumption B hold. Eq. (1) admits a positive solution with a weak singularity at 0 if and only if $b(x)h(\Phi) \in L^1(B_{1/2})$, or in other words,

$$\int_{0^+} r^{N-1} b_0(r) h(\Phi(r)) \, \mathrm{d}r < \infty. \tag{6}$$

From Assumption B, we have $p \leq N + \vartheta$. We set

$$q_* := \frac{(N+\sigma)(p-1)}{N+\vartheta-p} \text{ if } p < N+\vartheta \text{ and } q_* := \infty \text{ if } p = N+\vartheta.$$
 (7)

- If $p = N + \vartheta$, then (6) holds automatically for any $q < \infty$.
- ② If $p < N + \vartheta$ and $q \neq q_*$, then (6) holds iff $q < q_*$. If $L_A = L_b = 1$ and $h(t) = t^{q_*} (\ln t)^{\alpha}$ for t > 0 large, then (6) holds iff $\alpha < -1$.

Theorem 5 (Removability, C.-Cîrstea)

Let Assumption B hold. If $b(x)h(\Phi) \notin L^1(B_{1/2})$, then $p < N + \vartheta$, $q \ge q_*$ and every positive solution of (1) can be extended as a positive continuous solution of (1) in B_1 .

Remark 1

- **9** By applying Theorem 5 with A = b = 1 and $h(t) = t^q$, then we recover the removability result of Brezis–Véron (1980) (for p = 2) and Vázquez–Véron (1980/1981) (for 1).
- ② Theorem 5 in the case $\mathcal{A}=1$ gives a sharp version of Theorem 1.3 in Cîrstea–Du (2010).
- The proof of Theorem 5 is crucially based on understanding the solutions with strong singularities and it uses techniques in Cîrstea (Memoirs AMS, 2014).

If (6) and Assumption B hold, we prove that \exists positive solutions of (1) satisfying $\lim_{|x|\to 0} u(x)/\Phi(x) = \infty$.

Case 1: $q < q_*$. We define $\tilde{u}(r)$ for r > 0 small by

$$\int_{\tilde{u}(r)}^{\infty} \frac{\mathrm{d}t}{\left[th(t)\right]^{\frac{1}{\rho}}} = \int_{0}^{r} \left[M_{1} \frac{b_{0}(\tau)}{\mathcal{A}(\tau)} \right]^{\frac{1}{\rho}} \mathrm{d}\tau, \tag{8}$$

where M_1 is given by

$$M_1 := \frac{p + \sigma - \vartheta}{(N + \sigma)(p - 1) - (N + \vartheta - p)q}.$$

Case 2: $q = q_* < \infty$ (for $p < N + \vartheta$). We need extra information:

$$\begin{cases} \text{ either (a) } t \longmapsto L_h(e^t) \text{ is regularly varying at } \infty, \\ \text{or (b) } t \longmapsto \left[L_{\mathcal{A}}(e^{-t})\right]^{-\frac{q_*}{p-1}} L_b(e^{-t}) \text{ is regularly varying at } \infty. \end{cases}$$
(9)

4 D > 4 P > 4 E > 4 E > 9 Q P

We introduce $F_1:(0,\infty)\to(0,\infty)$ and $M_2>0$ as follows

$$\begin{cases}
F_1(s) := \int_0^{\Phi^{-1}(s)} \xi^{N-1} b_0(\xi) h(\Phi(\xi)) d\xi & \text{for } s > 0, \\
M_2 := \frac{N\omega_N(\sigma - \vartheta + p)}{N + \vartheta - p} > 0.
\end{cases} (10)$$

For any r > 0 small, we define $\tilde{u}(r)$ of the following form

$$\begin{cases} \tilde{u}(r) := \Phi(r) [M_2 F_1(\Phi(r))]^{-\frac{1}{q_* - p + 1}} & \text{if } (9)(a) \text{ holds,} \\ \int_c^{\tilde{u}(r)} [M_2 F_1(t)]^{\frac{1}{q_* - p + 1}} dt := \Phi(r) & \text{if } (9)(b) \text{ holds.} \end{cases}$$
(11)

□ ト 4 回 ト 4 重 ト 4 重 ト 9 へ ○

9 / 29

Theorem 6 (Classification, C.-Cîrstea)

Let Assumption B and (6) hold. Then for every positive solution u of (1), exactly one of the following cases occurs:

- (i) u can be extended as a positive continuous solution of (1) in B_1 ;
- (ii) $\lim_{|x|\to 0} u(x)/\Phi(x) = \lambda \in (0,\infty)$ and, moreover, u verifies

$$-\Delta_{\mathcal{A},p}u+b(x)h(u)=\lambda^{p-1}\delta_0\quad \text{in } \mathcal{D}'(B_1). \tag{12}$$

(iii) $u(x) \sim \tilde{u}(|x|)$ as $|x| \to 0$, where \tilde{u} is given by (8) if $q < q_*$ and by (11) when $q = q_* < \infty$ and (9) holds.

Remark 2

- Theorem 6 gives a sharp version of Theorem 1.1 in Cîrstea–Du (2010) (where $\mathcal{A}=1$).
- Theorems 4, 5 and 6 extend the optimal results in Brandolini–Chiacchio–Cîrstea–Trombetti (2013) (p = 2, b = 1, $h(t) = t^q$).

Crucial ingredients

Lemma 7 (A priori estimates)

Let $H(t) = \int_0^t h(s) ds$. For any $r_0 \in (0, 1/2)$, there exists a constant $c = c(r_0) > 0$ s.t. for every positive (sub-)solution of (1), we have

$$\int_{u(x)}^{\infty} \frac{\mathrm{d}t}{\sqrt[p]{H(t)}} \ge c|x| \left(\frac{b(x)}{\mathcal{A}(|x|)}\right)^{\frac{1}{p}} \quad \text{for all } 0 < |x| \le r_0. \tag{13}$$

Lemma 8 (A spherical Harnack-type inequality)

Fix $r_0 \in (0, 1/2)$. There exists a positive constant K (depending on p, N and r_0) such that for every positive solution u of (1), we have

$$\max_{|x|=r} u(x) \le K \min_{|x|=r} u(x) \quad \text{for all } 0 < r \le r_0/2. \tag{14}$$

□ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □

Lemma 9 (A regularity result)

Fix $r_0 \in (0,1/4)$ and $\delta \geq 0$. Let g be a positive continuous function on (0,1) such that $g \in RV_{-\delta}(0+)$. Suppose that u is a positive solution of (1) and C_0 is a positive constant such that

$$0 < u(x) \le C_0 g(|x|)$$
 for $0 < |x| < 2r_0$. (15)

Then there exist positive constants C > 0 and $\alpha \in (0,1)$ such that

$$|\nabla u(x)| \le C \frac{g(|x|)}{|x|} \quad \text{and} \quad |\nabla u(x) - \nabla u(x')| \le C \frac{g(|x|)}{|x|^{1+\alpha}} |x - x'|^{\alpha} \quad (16)$$

for any x, x' in \mathbb{R}^N satisfying $0 < |x| \le |x'| < r_0$.

◆ロ → ◆母 → ◆ き → を き の へ で 。

Corollary 10

Assume that u is a positive solution of (1) such that $\lim_{|x|\to 0} u(x) = \infty$. Then, for every $\epsilon \in (0,1)$, there exists $r_{\epsilon} \in (0,1)$ such that the equation

$$-\Delta_{\mathcal{A},p}v + b_0(|x|)L_h(v)v^q = 0 \quad \text{in } B^*_{r_\epsilon} := B_{r_\epsilon} \setminus \{0\}$$
 (17)

has a positive solution v_{ϵ} satisfying

$$(1-\epsilon)u \le v_{\epsilon} \le (1+\epsilon)u$$
 in $B_{r_{\epsilon}}^*$.

Corollary 11

Let $r_{\epsilon} \in (0,1)$ be arbitrary and v be a positive solution of (17). Then there exist two positive radial solutions of (17) in $B_{r_{\epsilon}/2}^*$, say v_* and v^* , such that

$$K^{-1}v \le v_* \le v \le v^* \le Kv \quad \text{in } B_{r_e/2}^*,$$
 (18)

where K > 1 is a sufficiently large constant.

Theorem 12 (Strong singularities)

Let Assumption B and (6) hold. If u is any positive solution of (1) with a strong singularity at 0, then $u(x) \sim \tilde{u}(|x|)$ as $|x| \to 0$, where \tilde{u} is given by (8) if $q < q_*$ and by (11) when $q = q_* < \infty$ and and (9) holds.

Proposition 1 (Case $q < q_*$)

For any positive radial solution v of (17) with a strong singularity at 0, we have $v(r) \sim \tilde{u}(r)$ as $r \to 0^+$, where \tilde{u} is defined by (8).

We adapt ideas from Cîrstea-Du (2010, JFA). We first show the following.

Lemma 13 (Case $q < q_*$)

Let f be a regularly varying function at 0 with index μ .

- (a) If $\mu < -(p+\sigma-\vartheta)/(q-p+1)$, then we have $\lim_{r\to 0^+} v(r)/f(r) = 0$.
- (b) If $\mu > -(p+\sigma-\vartheta)/(q-p+1)$, then $\lim_{r\to 0^+} v(r)/f(r) = \infty$.

We next construct a local family of sub-super-solutions of (17). Let $\theta = M_1(p-1)$. Fix $\eta_0 \in (0,1)$ small. For each $\eta \in [0,\eta_0]$, we define

$$v_{\pm\eta}(r)=C_{\pm\eta}[\tilde{u}(r)]^{1\pm\eta} \ \ ext{for} \ r\in(0,1),$$

where $C_{\pm\eta}$ is a positive constant given by

$$C_{\pm\eta} := \left[(1 \pm \eta)^{p-1} (1 \pm \eta \theta) \right]^{\frac{1}{q-p+1}}.$$
 (19)

Lemma 14 (Case $q < q_*$)

For every $\epsilon \in (0,1)$ small, there exists $r_{\epsilon} \in (0,1)$ such that $(1-\epsilon)v_{-\eta}$ and $(1+\epsilon)v_{\eta}$ is a sub-solution and super-solution of (17) in $B_{r_{\epsilon}}^{*}$, respectively, for every $\eta \in [0,\eta_{0}]$.

By Lemma 13, we find that

$$\lim_{r \to 0^+} \frac{v(r)}{v_{\eta}(r)} = 0 \quad \text{and} \quad \lim_{r \to 0^+} \frac{v(r)}{v_{-\eta}(r)} = \infty.$$
 (20)

Notice that $(1+\epsilon)v_{\eta}(r)+v(r_{\epsilon})$ and $v(r)+\tilde{u}(r_{\epsilon})$ are super-solutions of (17) in $B_{r_{\epsilon}}^{*}(0)$. Then by the comparison principle,

$$v(r) \le (1+\epsilon)v_{\eta}(r) + v(r_{\epsilon})$$
 and $v(r) + \tilde{u}(r_{\epsilon}) \ge (1-\epsilon)v_{-\eta}(r)$ (21)

for all $0 < r \le r_{\epsilon}$. By letting $\eta \to 0^+$ in (21), we have

$$v(r) \le (1+\epsilon)\tilde{u}(r) + v(r_{\epsilon})$$
 and $v(r) + \tilde{u}(r_{\epsilon}) \ge (1-\epsilon)\tilde{u}(r)$ (22)

for all $0 < r \le r_{\epsilon}$. By letting $r \to 0^+$ in (22), we conclude that

$$1 - \epsilon \le \liminf_{r \to 0^+} \frac{v(r)}{\tilde{u}(r)} \le \limsup_{r \to 0^+} \frac{v(r)}{\tilde{u}(r)} \le 1 + \epsilon. \tag{23}$$

Finally, we pass to the limit with $\epsilon \to 0$ in (23).

Proposition 2 (Critical case $q = q_*$ for $p < N + \vartheta$)

If v is a positive radial solution of (17) with a strong singularity at 0 and (9) holds, then $v(r) \sim \tilde{u}(r)$ as $r \to 0^+$, where \tilde{u} is defined by (11).

Main ideas in the proof:

We apply the change of variable y(s) = v(r) with $s = \Phi(r)$ and arrive at

$$\left| \frac{dy}{ds} \right|^{p-2} \frac{d^2y}{ds^2} = \frac{(N\omega_N)^{\frac{p}{p-1}}}{p-1} r^{\frac{p(N-1)}{p-1}} \left[\mathcal{A}(r) \right]^{\frac{1}{p-1}} b_0(r) L_h(y(s)) \left[y(s) \right]^q \tag{24}$$

for s > 0. After many hidden analyses, we have that

$$\frac{1}{2} \le \frac{s(dy/ds)}{y(s)} \le C'' + 2 \quad \forall s \ge s_0 \text{ large.}$$
 (25)

◆ロト ◆部 → ◆差 > ◆差 > ・差 ・ からぐ

Step 1: Show that
$$0 < \liminf_{r \to 0^+} \frac{v(r)}{\tilde{u}(r)} \le \limsup_{r \to 0^+} \frac{v(r)}{\tilde{u}(r)} < \infty$$
.

Define $E_1(r)$ and $E_2(r)$ for $r \in (0,1)$ as follows

$$E_1(r) := r^{\frac{p(N-1)}{p-1}} \left[\mathcal{A}(r) \right]^{\frac{1}{p-1}} b_0(r) \text{ and } E_2(r) := \left[L_{\mathcal{A}}(r) \right]^{-\frac{q_*}{p-1}} L_b(r).$$
 (26)

Using (25) into (24), we find positive constants c_1 and c_2 so that

$$c_{1}E_{1}(\Phi^{-1}(s))L_{h}(y)s^{q_{*}} \leq \left[\frac{dy}{ds}\right]^{-q_{*}+\rho-2}\frac{d^{2}y}{ds^{2}} \leq c_{2}E_{1}(\Phi^{-1}(s))L_{h}(y)s^{q_{*}}$$
(27)

for all $s \ge s_0$. For some $\ell > 0$, we obtain that

$$E_1(r) \sim \ell \left[\Phi(r) \right]^{-q_* - 1} E_2(r) \text{ as } r \to 0^+.$$
 (28)

Hence, using (28), \exists positive constants c_3 and c_4 s.t. $\forall s \geq s_0$

$$\frac{c_3}{s} E_2(\Phi^{-1}(s)) L_h(y) \le \left[\frac{dy}{ds}\right]^{-q_* + p - 2} \frac{d^2y}{ds^2} \le \frac{c_4}{s} E_2(\Phi^{-1}(s)) L_h(y).$$
(29)

4 L P 4 B P 4 E P

Case 1: Assume that (9)(a) holds.

Then, using $\ln y(s) \sim \ln s$, we get that

$$L_h(y(s)) \sim L_h(s) \sim h(s)/s^{q_*}$$
 as $s \to \infty$. (30)

So, from (27) and (30), there exist positive constants \tilde{c}_1 and \tilde{c}_2 such that

$$\tilde{c}_1 E_1(\Phi^{-1}(s)) h(s) \le \left[\frac{dy}{ds}\right]^{-q_* + p - 2} \frac{d^2 y}{ds^2} \le \tilde{c}_2 E_1(\Phi^{-1}(s)) h(s) \text{ for } s \ge s_0.$$
(31)

Using that $y'(s) o \infty$ as $s o \infty$ and integrating (31), we obtain that

$$c_5 F_1(s) \le \left[\frac{dy}{ds}\right]^{-q_* + p - 1} \le c_6 F_1(s) \quad \text{for all } s \ge s_0, \tag{32}$$

where c_5 and c_6 are positive constants, whilst $F_1(s)$ is defined by

$$F_1(s) := \int_s^\infty E_1(\Phi^{-1}(t)) h(t) dt = \int_0^{\Phi^{-1}(s)} \xi^{N-1} b_0(\xi) h(\Phi(\xi)) d\xi. \quad (33)$$

Ting-Ying Chang (2014) 1st October, 2014 19 / 29

From (25) and (32), \exists positive constants d_1 and d_2 such that

$$d_1[F_1(s)]^{-\frac{1}{q_*-p+1}} \leq \frac{y(s)}{s} \leq d_2[F_1(s)]^{-\frac{1}{q_*-p+1}} \quad \text{ for all } s \geq s_0,$$

or, equivalently, for every $r \in (0, \Phi^{-1}(s_0))$, it holds

$$d_1 \left[F_1(\Phi(r)) \right]^{-\frac{1}{q_*-p+1}} \leq \frac{v(r)}{\Phi(r)} \leq d_2 \left[F_1(\Phi(r)) \right]^{-\frac{1}{q_*-p+1}}.$$

Hence, using the definition of \tilde{u} in (11), we conclude Step 1.

Case 2: Assume that (9)(b) holds.

Then, using that $\ln \Phi^{-1}(s) \sim \ln \Phi^{-1}(y(s))$ as $s \to \infty$, we obtain that

$$[L_{\mathcal{A}}(\Phi^{-1}(s))]^{-\frac{q_*}{p-1}}L_b(\Phi^{-1}(s)) \sim [L_{\mathcal{A}}(\Phi^{-1}(y(s)))]^{-\frac{q_*}{p-1}}L_b(\Phi^{-1}(y(s)))$$

as $s \to \infty$. This, jointly with (28), gives that

$$E_2(\Phi^{-1}(s)) \sim E_2(\Phi^{-1}(y(s))) \sim \frac{E_1(\Phi^{-1}(y(s)))}{\ell \left[y(s) \right]^{-q_* - 1}} \quad \text{as } s \to \infty,$$
 (34)

where E_1 and E_2 are defined by (26). From (25), (29) and (34), \exists positive constants d_3 and d_4 such that

$$d_3E_1(\Phi^{-1}(y)) h(y) \frac{dy}{ds} \le \left[\frac{dy}{ds}\right]^{-q_*+p-2} \frac{d^2y}{ds^2} \le d_4E_1(\Phi^{-1}(y)) h(y) \frac{dy}{ds}$$

for all $s \geq s_0$. With F_1 as defined in (33), this gives that

$$[d_4(q_*-p+1)]^{-rac{1}{q_*-p+1}} \leq rac{d}{ds} \left(\int_{V(s_0)}^{y(s)} [F_1(t)]^{rac{1}{q_*-p+1}} \, \mathrm{d}t
ight) \leq [d_3(q_*-p+1)]^{-rac{1}{q_*-p+1}}$$

for every $s > s_0$. Jointly with the definition of \tilde{u} in (11), we thus conclude $s_{top,1}$

Step 2: Construction of sub-super-solutions for (17).

Fix $\eta_0 \in (0,1)$ small. Using M_2 in (10), we define $\mathcal{C}_{\pm\eta}$ by

$$C_{\pm \eta} := \left(\frac{M_2}{1 \pm \eta}\right)^{\frac{1}{1 \pm \eta}} = \left[\frac{(q_* - p + 1)N\omega_N}{q - 1}\right]^{\frac{1}{1 \pm \eta}} \quad \text{for all } \eta \in [0, \eta_0]. \tag{35}$$

If (9)(a) holds, then for any $\eta \in [0, \eta_0]$, we define $v_{\pm \eta}$ as follows

$$v_{\pm\eta}(r) := \int_{s_0}^{\Phi(r)} \left[C_{\pm\eta} F_1(t) \right]^{-\frac{1\pm\eta}{q_*-\rho+1}} \, \mathrm{d}t \quad \text{for any } r \in (0, \Phi^{-1}(s_0)), \quad (36)$$

where $s_0 > 0$ is fixed large enough and F_1 is given by (33). If, in turn, (9)(b) is satisfied, we introduce $v_{\pm \eta}$ in the next identity

$$\int_{C}^{\nu_{\pm\eta}(r)} [C_{\pm\eta}F_1(t)]^{\frac{1\pm\eta}{q_*-p+1}} dt = \Phi(r) \text{ for any } r > 0 \text{ small},$$
 (37)

where c>0 is a large constant such that $\Phi^{-1}(c)<1$.

Ting-Ying Chang (2014) 1st October, 2014 22 / 29

Lemma 15

For every $\epsilon \in (0,1)$ small, there exists $r_{\epsilon} \in (0,1)$ such that $(1-\epsilon)v_{-\eta}$ and $(1+\epsilon)v_{\eta}$ is a sub-solution and super-solution of (17) in $B_{r_{\epsilon}}^{*}$, respectively, for every $\eta \in [0,\eta_{0}]$.

Step 3: Proof of Proposition 2 concluded.

In either Case 1 (that is, (9)(a) holds) or Case 2 (when (9)(b) holds), by using the definitions of \tilde{u} and $v_{\pm\eta}$, we infer that

$$\lim_{r \to 0^+} \frac{\tilde{u}(r)}{v_{\eta}(r)} = 0 \quad \text{and} \quad \lim_{r \to 0^+} \frac{\tilde{u}(r)}{v_{-\eta}(r)} = \infty \quad \text{for every } \eta \in (0, \eta_0]. \tag{38}$$

From Step 1 and (38), we regain (20). Following the proof of Proposition 1, we obtain (21)–(23), proving that $v(r) \sim \tilde{u}(r)$ as $r \to 0^+$.

Assume that

$$\begin{cases} & \mathcal{A}(t) \sim t^{\vartheta} (\ln(1/t))^{\alpha} \quad \text{as } t \to 0 \quad \text{for some } \alpha \in \mathbb{R} \\ & b(x) \sim |x|^{\sigma} (\ln(1/|x|))^{\beta} \quad \text{as } |x| \to 0 \quad \text{for some } \beta \in \mathbb{R} \\ & h(t) \sim t^{q} \exp(-(\log t)^{\nu}) \quad \text{as } t \to \infty \quad \text{for some } q > p - 1, \nu \in (0, 1). \end{cases}$$

$$(39)$$

Let u be any positive solution of (1).

- (A) If $p-1 < q < q^*$, then exactly one of the following occurs as $|x| \to 0$:
 - (i) u can be extended as a positive continuous solution of (1) in the whole ball B_1 , that is $\lim_{|x|\to 0} u(x) \in (0,\infty)$ and (3) holds for every $\phi \in C^1_c(B_1)$.
 - (ii) u has a weak singularity at 0, that is $\lim_{|x|\to 0} u(x)/\Phi(x) = \lambda \in (0,\infty)$ and, moreover, u verifies

$$-\Delta_{\mathcal{A},p}u + b(x)h(u) = \lambda^{p-1}\delta_0 \quad \text{in } \mathcal{D}'(B_1). \tag{40}$$

u has a strong singularity at 0 and moreover, we have

$$u(x) \sim \left[M_1 M_3^{\rho} \left(\log \frac{1}{|x|} \right)^{-\alpha + \beta} \exp\left(-\left(M_3^{-1} \log \frac{1}{|x|} \right)^{\nu} \right) |x|^{\rho + \sigma - \vartheta} \right]^{-\frac{1}{q - \rho + 1}} \quad \text{as } |x| \to 0. \quad (41)$$
 where $M_3 = \left(\frac{q - \rho + 1}{\rho + \sigma - \vartheta} \right)$.

(B) If $q = q_*$, then the conclusions above hold except for (41) which is replaced by

$$u(x) \sim \left[\frac{M_3^{\rho - 1 + \nu}}{\nu} \frac{\rho + \sigma - \vartheta}{N + \vartheta - \rho} \left(\log \frac{1}{|x|} \right)^{-\alpha + \beta - \nu + 1} \exp \left(-\left(M_3^{-1} \log \frac{1}{|x|} \right)^{\nu} \right) |x|^{\rho + \sigma - \vartheta} \right]^{-\frac{1}{q_* - \rho + 1}}$$
as $|x| = 0$ (42)

(C) If $q > q_*$, then only case (A)(i) occurs.

- [1] N.H. Bingham, C.M. Goldie, J.L. Teugels, *Regular Variation*, Encyclopedia Math. Appl., vol. 27, Cambridge University Press, Cambridge, 1987.
- [2] B. Brandolini, F. Chiacchio, F.C. Cîrstea, C. Trombetti, Local behaviour of singular solutions for nonlinear elliptic equations in divergence form. Calc. Var. Partial Differential Equations, 48, no. 3-4, 367–393 (2013)
- [3] H. Brezis, L. Véron, Removable singularities for some nonlinear elliptic equations, Arch. Ration. Mech. Anal. **75** (1980/81), 1–6.
- [4] N. Chaudhuri, F.C. Cîrstea, On trichotomy of positive singular solutions associated with the Hardy-Sobolev operator, C. R. Acad. Sci. Paris, Ser. I 347 (2009), 153–158.
- [5] F.C. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials. Mem. Amer. Math. Soc. 227, no. 1068, in press. DOI: http://dx.doi.org/10.1090/memo/1068

- [6] F.C. Cîrstea, Y. Du, Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity, J. Funct. Anal. 250 (2007), 317–346.
- [7] F.C. Cîrstea, Y. Du, *Isolated singularities for weighted quasilinear elliptic equations*, J. Funct. Anal. **259** (2010), 174–202.
- [8] A. Friedman, L. Véron, *Singular solutions of some quasilinear elliptic equations*, Arch. Ration. Mech. Anal. **96** (1986), 359–387.
- [9] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, reprint of the 1998 edition, Classics Math., Springer-Verlag, Berlin, 2001.
- [10] B. Guerch, L. Véron, Local properties of stationary solutions of some nonlinear singular Schrödinger equations, Revista Matématica Iberoamericana 7 (1991), 65–114.
- [11] V. Marić, *Regular Variation and Differential Equations*, Lecture Notes in Math., vol. 1726, Springer-Verlag, Berlin, 2000.

- [12] E. Seneta, *Regularly Varying Functions*, Lecture Notes in Math., vol. 508, Springer-Verlag, Berlin–New York, 1976.
- [13] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302.
- [14] J. Serrin, *Isolated singularities of solutions of quasi-linear equations*, Acta Math. **113** (1965), 219–240.
- [15] S.D. Taliaferro, Asymptotic behavior of solutions of $y'' = \phi(t)y^{\lambda}$, J. Math. Anal. Appl. (1978), 95–134.
- [16] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747.
- [17] J.L. Vázquez, L. Véron, Removable singularities of some strongly nonlinear elliptic equations, Manuscripta Math. 33 (1980/1981), 129–144.
- [18] J.L. Vázquez, L. Véron, *Isolated singularities of some semilinear elliptic equations*, J. Differential Equations **60** (1985), 301–321.

- [19] L. Véron, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal. **5** (1981), 225–242.
- [20] L. Véron, Weak and strong singularities of nonlinear elliptic equations, in: Nonlinear Functional Analysis and Its Applications, Part 2, Berkeley, CA, 1983, in: Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 477–495.