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We start with an example:

For the prescribing scalar curvature equation

−∆u +
n(n − 2)

4
u =

n − 2

4(n − 1)
R(x)u

n+2
n−2 , u > 0, x ∈ Sn. (1)

Nirenberg Problem: For which function R, one can solve (2)?

A priori estimates + degree theory+ variational methods....

Generally:

−∆u(x) = f (x , u(x),∇u(x)), u > 0, x ∈ Ω,+ boundary conditions (2)
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The blow-up method with Liouville type theorem

Theorem (A simple example)

For 0 < α < 2, and 1 < p < n+α
n−α , suppose

u ∈ Lα ∩ C 1,1
loc (Ω) is upper semi-continuous on Ω̄,

and is a positive solution of{
(−∆)α/2u(x) = R(x)up(x) + lower order term, x ∈ Ω,
u(x) ≡ 0, x ̸∈ Ω.

(3)

Assuming R(x) is continuous with 0 < a ≤ R(x) ≤ b, then:

∥u∥L∞(Ω) ≤ C , (4)

for some positive constant C independent of u. 4 / 49
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Sketch of the proof.
Assume for a sequence of solutions {uk} to (3) such that:

uk(x
k) = max

Ω
uk := mk → ∞.

Let λk = m
1−p
α

k , 0 ≤ vk = 1
mk

uk(λkx + xk) ≤ 1, then

(−∆)α/2vk(x) = vpk (x),

x ∈ Ωk := {x ∈ Rn|x = y−xk

λk
, y ∈ Ω}.

Let dk = dist(xk , ∂Ω). Employing the contradiction argument, we exhaust all three
possibilities.
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Case i) limk→∞
dk
λk

= ∞.
It is clear that

Ωk → Rn, as k → ∞.

We can prove there exists a function v such that, as k → ∞,

vk(x) → v(x), (−∆)
α
2 vk(x) → (−∆)

α
2 v(x),

thus
(−∆)

α
2 v(x) = vp(x), x ∈ Rn. (5)
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Case ii) limk→∞
dk
λk

= C > 0.
In this case,

Ωk → Rn
+C := {xn ≥ −C |x ∈ Rn}.

Similar to Case i), here we are able to establish the existence of a function v and a
subsequence of {vk}, such that, as k → ∞,

vk(x) → v(x), (−∆)
α
2 vk(x) → (−∆)

α
2 v(x),

thus
(−∆)

α
2 v(x) = vp(x), x ∈ Rn

+C . (6)
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Case iii) limk→∞
dk
λk

= 0.
Impossible via uniform a priori estimates of Vk .

Standard W 2,p and C 2,α type estimates.

Vk = 1 near boundary where it equals 0.
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For 1 < p < n+α
n−α , the Liouville type theorem (non-existence of positive solutions) in

the whole space and the half space for the following equation are known:

(−∆)
α
2 u(x) = up(x).

Hence, (5) and (6), or cases (i) and (ii) are impossible.
Hence ⇒ the a priori estimate.

The critical case p = n+2s
n−2s is much harder.
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One approach:Liouville type theorem ⇒ a priori estimates ⇒ existence.
When p ≥ n+α

n−α , we don’t have Liouville type thorem.

Another interesting case: non-existence ⇒ existence.

Super-critical HLS non-existence in some bounded domain
⇒ existence in the whole space (via Poincare Map)
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Regularity and a priori estimates

The regularity of solutions was extensively studied and many fruitful results was
achieved (L. Caffarelli, B. Gidas, L. Nirenberg, J. Spruck, De Giorgi, J. Nash,...)

• Hilbert 19th problems

• Variational problems

• Prescribing scalar curvature equations

• Monge-Ampere equation

• Navier-Stokes equation

Maximum principles are very useful tools .....
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Fractional Laplacian

For u ∈ C∞
0 (Rn), 0 < s < 1, the fractional Laplacian (−∆)su(x), is defined as

(−∆)su(x) = F−1[(2π|ξ|)2sF [u](ξ)](x) = Cn,sP.V .

∫
Rn

u(x)− u(y)

|x − y |n+2s
dy ,

where P.V . stands for the Cauchy principle value.
One can show that for the above type functions u, it holds that:

|(−∆)su(x)| ⩽ C

1 + |x |n+2s
. (7)

To define (−∆)su as a distribution, one naturally introduce the following space for u:

L2s =

{
u : Rn → R

∣∣∣∣∥u∥L2s :=

∫
Rn

|u(y)|
1 + |y |n+2s

dy < +∞
}
.
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Then for u ∈ L2s , (−∆)su as a distribution is well-defined: ∀φ ∈ C∞
0 (Rn),

(−∆)su[φ] =

∫
Rn

u(x)(−∆)sφ(x)dx . (8)

Indeed, u ∈ L2s =⇒ the integral on the right hand side of (8) converges.
For u ∈ L2sRn, (−∆)su is also a distribution on Ω ⊂ Rn naturally.
For f ∈ L1loc(Ω) ⊂ D ′(Ω), we say

(−∆)su = f in D′(Ω), (9)

if for any test function φ ∈ C∞
0 (Ω), it holds that

(−∆)su[φ] =

∫
Rn

u(x)(−∆)sφ(x)dx =

∫
Ω
f (x)φ(x)dx . (10)
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For u ∈ L2s ∩ C 1,1
loc (Ω), (−∆)su is also pointwisely well-defined on Ω by the formula

(−∆)su(x) = Cn,sP.V.

∫
Rn

u(x)− u(y)

|x − y |n+2s
dy ≜ f (x) for x ∈ Ω. (11)

For u ∈ L2s ∩ C 1,1
loc (Ω), f (x) ∈ C ν(Ωloc) and the point-wise definition ⇔ the

distributional one:
(−∆)su(x) = f (x) in D ′(Ω). (12)

One proof is to approximate u in L2s ∩ C 1,1
loc (Ω) by C∞

0 functions in Rn.
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1 The fractional Laplacian is a nonlocal operator that captures nonlocal phenomena
better.

2 It is the operator associated with the Levy process.

3 It is a promising research filed with many interesting mathematical problems.

4 Many applications in life sciences
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For 0 < s < 1, consider the problem:{
(−∆)su = f in Ω,

u = 0 on Rn\Ω.
(13)

Classical solutions u ∈ C 2s
loc(Ω) ∩ C (Rn) for the Dirichlet problem (13) has been well

studied.
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We start with a special solution:

u(x) =

c(n, s)

∫
∂B1

(1− |x |2)s

|x − y |n
dHn−1

y , for x ∈ B1;

0, for x ∈ Rn\B1.

(14)

is a non-trivial solution of : {
(−∆)su = 0 in B1,

u = 0 on Rn\B1.
(15)

One can check that u satisfies:

lim
ϵ→0

1

ϵs

∫
{x∈B1|δ(x)⩽ϵ}

|u(x)|dx = c > 0. (16)

Here and hereafter, we denote, δ(x) = dist(x , ∂Ω).
17 / 49



A brief introduction
Fractional Laplacian

Illustrating examples of Liouville type theorems
Outline of the proof for the maximum principle on a punctured ball

Preliminaries
Unexpected problem with uniqueness

For fractional Laplacian, the Dirichlet type problem has a uniqueness problem.
One naturally want to know:

1 some ‘natural’ conditions on u to guarantee the uniqueness,

2 some corresponding estimates in the related spaces,

3 w /∈ W 2s,p(Ω), what can replace it?

18 / 49



A brief introduction
Fractional Laplacian

Illustrating examples of Liouville type theorems
Outline of the proof for the maximum principle on a punctured ball

Preliminaries
Unexpected problem with uniqueness

First, we derive a uniqueness condition which is somewhat optimal:

Theorem (Li, Liu preprint)

Let 0 < s < 1, δs f ∈ L1(B1), then the solution u ∈ L2s of (13) that satisfies
condition:

lim
ϵ→0

1

ϵs

∫
{x∈B1|δ(x)⩽ϵ}

|u(x)|dx = 0, (17)

exists and must be unique.
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Remark

Indeed, in the Lp-theory for the regular Laplacian case:{
−∆u = f in Ω,

u = 0 on ∂Ω.
(18)

The boundary condition u = 0 on ∂Ωcan be understood as:

lim
ϵ→0

1

ϵ

∫
{x∈B1|δ(x)⩽ϵ}

|u(x)|dx = 0. (19)

In this sense, the previous theorem can be seen as a fractional generalization.
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We also derive some basic estimates for:{
(−∆)su + b⃗ · ∇u + cu = f in D′(B1),

u = 0 in Rn\B1.
(20)
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Theorem (Li, Liu preprint)

1
2 < s < 1, 1− s ⩽ r ⩽ s, 1 ⩽ p < ∞, b⃗, c ∈ L∞(B1), c ⩾ 0 in B1 and f ∈ Lpr (B1).
Then (20) has a unique solution u ∈ L2s that satisfies the condition (17).
Furthermore,

∥δr (−∆)su∥Lp(B1) ⩽ C∥δr f ∥Lp(B1). (21)

The derivative of u can also be estimated:

∥|∇u|∥Lqr (B1) ⩽ C∥f ∥L1r (B1), if p = 1 1 ⩽ q <
n

n − 2s + 1
. (22)

∥|∇u|∥
L

np
n−(2s−1)p
r (B1)

⩽ C∥f ∥Lpr (B1), if 1 < p <
n

2s − 1
(23)

∥|∇u|∥L∞r (B1) ⩽ C∥f ∥Lpr (B1), if p >
n

2s − 1
. (24)
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The well known Hardy-Littlewood-Sobolev inequality states:

∫
Rn

∫
Rn

f (x)g(y)

|x − y |λ
dxdy

≤ C (n, s, λ)||f ||r ||g ||s

where 0 < λ < n, 1 < s, r < ∞, 1
r +

1
s +

λ
n = 2, f ∈ Lr (Rn) and g ∈ Ls(Rn).
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The best constant C = C (n, s, α) is the maximal of:

J(f , g) =

∫
Rn

∫
Rn

f (x)|x − y |α−ng(y)dxdy

under the constraints
||f ||r = ||g ||s = 1.

The above leads us to a system of integral equations on f and g . Let u = c1f
r−1,

v = c2g
s−1, p = 1

r−1 , q = 1
s−1 , and choose suitable constants c1 and c2, we arrive at

the Hardy-Littlewood-Sobolev system of the Euler-Lagrange equations for the H-L-S
inequality :
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The Hardy-Littlewood-Sobolev system (HLS):{
u(x) =

∫
Rn

vq(y)
|x−y |n−γ dy , u > 0,

v(x) =
∫
Rn

up(y)
|x−y |n−γ dy , v > 0,

(25)

It corresponds to {
(−∆)γ/2u = vq, u > 0, in Rn,

(−∆)γ/2v = up, v > 0, in Rn,
(26)

with

0 < p < ∞, 0 < q < ∞,
1

p + 1
+

1

q + 1
=

n − γ

n
.
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Liouville theorems and classifications of solutions

If p = q = n+γ
n−γ , and u(x) = v(x), then (26) reduces to

(−∆)γ/2u = u(n+γ)/(n−γ), u > 0, in Rn. (27)

⇐⇒

u(x) =

∫
Rn

u(y)
n+γ
n−γ

|x − y |n−γ
dy , u > 0 in Rn. (28)
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Liouville theorems and classifications of solutions

In particular, when n ≥ 3, and γ = 2,

−∆u = u(n+2)/(n−2), u > 0, in Rn, n ≥ 3 (29)

(29) is the ‘blowing-up’ equation of the curvature equation:

−∆u +
n(n − 2)

4
R0u =

n − 2

4(n − 1)
R1(x)u

n+2
n−2 , x ∈ Mn, n ≥ 3

There is a similar blowing-up equation to study for n = 2.
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Liouville theorems and classifications of solutions

The classification of solutions for the following equation is solved with the development
of the method of moving planes:

(−∆)su = u
n+2s
n−2s , x ∈ Rn, n ≥ 3, (30)

with
u = O(|x |2s−n). (31)

Gidas, Ni, and Nirenberg(1981), s = 1
Caffarelli, Gidas and Spruck (1989) removed the condition (31) when s = 1.
Chen and Li (1992), and Li (1996) simplified their proof.
Wei and Xu (1999) generalized this result to high order for 2s is an even integer.
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When γ is not an even integer

Theorem (Chen, Li, Ou, 2006, CPAM.)

Every positive regular solution u(x) of

u(x) =

∫
Rn

u(y)
n+γ
n−γ

|x − y |n−γ
dy , 0 < γ < n, u > 0 in Rn. (32)

is radially symmetric and decreasing about some point x0 and therefore assumes the
form

u = C
[n(n − 2)λ2]

n−2
4

(λ2 + |x − x0|2)
n−2
2

with some positive constants C and λ.
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Liouville theorems and classifications of solutions

Another similar problem is {
−∆u = eu, x ∈ R2,∫
R2 e

udx < +∞.
(33)

Theorem (Chen, Li, Duke.)

Every solution of (33) is radially symmetric with respect to some point in R2 and
hence assumes the form of

u(x) = ln
(32λ3)

(4 + λ2|x − x0|2)2.

30 / 49



A brief introduction
Fractional Laplacian

Illustrating examples of Liouville type theorems
Outline of the proof for the maximum principle on a punctured ball

Liouville theorems for Hardy-Littlewood-Sobolev system
The method of moving planes
Fractional Laplacian and anti-symmetric systems

Here, we present a brief introduction of the method of moving planes:
Consider u(x) a solution to −∆u = f (x , u) or simply f (u)
x = (x1, x2, ...x − n) = (x1, x

′) ∈ Rn, wλ(x) = uλ(x)− u(x)

with uλ(x) = u(xλ), xλ = (2λ− x1, x
′)

Then −∆wλ(x) =f (xλ, uλ)− f (x , u) ≥ f (x , uλ)− f (x , u)= c(x , λ)wλ, or:

−∆wλ(x) ≥ c(x , λ)wλ

for x ∈ Σλ = {x = (x1, x
′) | x1 < λ}.

Here we use the structure type condition that f is monotone increasing in x1 before it
reaches certain center point.
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Maximum principle for anti-symmetric solutions:

Theorem (Cheng, Li, Huang, CCM, 2017.)

Let w(y) ∈ L2s be a λ−antisymmetric function. Suppose there exists x ∈ Σλ such that

w(x) = inf
Σλ

w(y) ≤ 0.

If w is C 1,1 at x, we have

(−∆)sw(x) ≤ C̃n,s

(
δ−2sw(x)− δ

∫
Σλ

(w(y)− w(x))(λ− y1)

|x − yλ|n+2s+2
dy

)
for some positive constant C̃n,s , where δ = d(x ,Tλ) = |x1 − λ|.
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Maximum principle for singular solutions:

Theorem (Li, Wu, Xu, PNAS, 2018.)

Assume that w(x) ∈ L2s , and satisfies in the sense of distribution
(−∆)sw(x) + a(x)w(x) ≥ 0, on Br (x

0)\{x0},
w(x) ≥ m > 0, on Br (x

0)\B r
2
(x0), r ≤ 1,

w(x) ≥ 0, in Rn, n ≥ 2,

(34)

Here a(x) ≤ D for some constant D, then there exists a positive constant
c = c(n, s,D) depending on n, s and D only, such that w(x) satisfies in the sense of
distribution

w(x) ≥ cm, x ∈ Br (x
0)\{x0}. (35)
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Liouville theorems for anti-symmetric solutions and existence

We study the anti-symmetric solutions of the following equation involving fractional
Laplacian: {

(−∆)su(x) = up(x), u(x) ≥ 0, x ∈ Rn
+,

u(x ′,−xn) = −u(x ′, xn), x = (x ′, xn) ∈ Rn,
(36)

where s ∈ (0, 1), Rn
+ = {x = (x1, x2, · · · , xn) ∈ Rn|xn > 0}, and x ′ = (x1, . . . , xn−1).
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Our first result is the following Liouville type theorem to (36)
(C. Li, R. Zhuo, 2022 CVPDE).

Theorem 1

Assuming 0 < p ≤ n+2s
n−2s and u(x) ∈ L2s ∩ C 1,1

loc (R
n
+) ∩ C (Rn) solves (36), then u ≡ 0.

In particular, there exists no bounded non-trivial solution.
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Due to the anti-symmetric property, fractional Laplacian can be written in the
following form:

(−∆)su(x) =

= Cn,s P.V .{
∫
Rn
+

(
1

|x − y |n+2s
− 1

|x∗ − y |n+2s
)(u(x)− u(y))dy

+

∫
Rn
+

2u(x)

|x∗ − y |n+2s
dy}.

Thus, one can naturally extend the defining domain of u:

L2s =⇒ L2s+1.
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Our second main result study the solutions in the extended class L2s+1

(C. Li, R. Zhuo, 2022 CVPDE).

Theorem 2

For 0 < p ≤ n+2s
n−2s , if u(x) ∈ L2s+1 ∩ C 1,1

loc (R
n
+) ∩ C (Rn) solves (36), then:

1 when p + 2s > 1, u = 0 is the only solution,

2 when p + 2s < 1, there exist non-trivial solutions to (36).
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Theorem

Assume that w(x) ∈ L2s , and satisfies in the sense of distribution
(−∆)sw(x) + a(x)w(x) ≥ 0, on Br (x

0)\{x0},
w(x) ≥ m > 0, on Br (x

0)\B r
2
(x0), r ≤ 1,

w(x) ≥ 0, in Rn, n ≥ 2,

(37)

Here a(x) ≤ D for some constant D, then there exists a positive constant
c = c(n, s,D) depending on n, s and D only, such that w(x) satisfies in the sense of
distribution

w(x) ≥ cm, x ∈ Br (x
0)\{x0}. (38)
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Generalized Bocher theorems

To derive this maximum principle for the nonnegative function with possible
singularity at the origin, we need to establish the following Bocher theorem for the
fractional Laplacian.
Generalized Bocher theorem for fractional super-harmonic nonnegative
functions on a punctuated ball(PNAS， 2018，C.Li,Z.Wu,H.Xu):
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Theorem

Let v(x) ∈ L2s be a nonnegative solution to

(−∆)sv(x) + c(x)v(x) = f (x) ≥ 0 on B1(0)\{0} (39)

for some f (x) ∈ L1loc(B1(0)\{0}) and c(x) ≤ D with some constant D, then

(i) v(x), f (x) ∈ L1loc(B1(0)),

(ii) (−∆)sv(x) + c(x)v(x) = f (x) + aδ0
on B1(0), for a constant a ≥ 0,

(40)

where δ0 is the Delta distribution concentrated at the origin, and all the inequalities
and identities are in the sense of distribution.
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Equations with first order term:

Theorem

( Bôcher theorem for fractional Laplacian) Let u(x) ∈ L2s with s ∈ (12 , 1) be a
nonnegative function in Rn (n ≥ 2) satisfying

(−∆)su(x) + b⃗(x) · ∇u(x) + c(x)u(x) ≥ 0 in D′(B1\{0}), (41)

where ∥b⃗(x)∥C1(B1) + ∥c(x)∥L∞(B1) ≤ M for some constant M, then u(x) ∈ L1loc(B1)
and

(−∆)su(x) + b⃗(x) · ∇u(x) + c(x)u(x) = µ+ aδ0(x) in D′(B1), (42)

for some constant a ≥ 0 and some nonnegative Radon measure µ on B1 satisfying
µ({0}) = 0.
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Generalized Bocher theorems

Besides, when b⃗(x) ≡ 0 in (41), then the theorem holds for s ∈ (0, 1).
The classical Bocher theorems for the Laplacian:
Bôcher theorem(1903): If v(x) is nonnegative and harmonic on B1(0)\{0}, then
there is a constant a ≥ 0 such that for all x ∈ B1(0)\{0} ⊂ Rn with n ≥ 2 that{

(i) v(x) is integrable on B1(0),
(ii) −∆v(x) = aδ0,

(43)

where δ0 is the Delta distribution concentrated at the origin.
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Generalized Bocher theorems

H. Brézis and P. Lions (1981) obtained another Bôcher type theorem for
super-harmonic functions:
Let v(x) ∈ L1loc(B1(0)\{0}), v(x) ≥ 0 a.e. in B1(0) be such that

∆v(x) ∈ L1loc(B1(0)\{0}) in the sense of distribution on B1(0)\{0},

−∆v(x) ≥ −Dv(x)− f (x), D > 0, a.e. in B1(0), with f ∈ L1loc(B1(0)).

Then v(x) ∈ L1loc(B1(0)) and there exist ϕ(x) ∈ L1loc(B1(0)) and a ≥ 0 such that

−∆v(x) = ϕ(x) + aδ0, in D′(B1(0)).
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Generalized Bocher theorems

Proof of Theorem (MPFL2)
We only need to consider the special case a(x) ≡ D and D ≥ 0.
First, we consider the case that w(x) is smooth and r = 1.
Then, when w(x) is not smooth, we consider wϵ(x) = w ∗ ρϵ ∈ C∞(B1−ϵ(0)), where
ρϵ is the standard mollifier.
From Theorem 10 (Bocher Theorem) and applying the mollification process in a
suitable way, we have (−∆)swϵ(x) + Dwϵ(x) ≥ 0 in B1−ϵ(x

0).
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Generalized Bocher theorems

Then using the conclusion in the first step, we know there exist suitable positive
constants c and c̃ satisfying 0 < c < c̃ < 1 such that wϵ(x) ≥ c̃mϵ ≥ cm in B1−ϵ(x

0),
where c > 0 is independent of ϵ.
Letting ϵ → 0, we can immediately derive w(x) ≥ cm with some c > 0, when
x ∈ B1(x

0)\{x0}.
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Generalized Bocher theorems

Finally, making scaling w̄(x) = w(rx + x0), we know from the first step that if
w̄(x) ≥ 0, x ∈ Rn,

(−∆)sw̄(x) + Dw̄(x) ≥ 0, x ∈ B1(0)\{0},
w̄(x) ≥ m > 0, x ∈ B1(0)\B 1

2
(0),

(44)

then there exists some positive constant c depending on n and s only such that

w̄(x) ≥ cm, in B1

(
0

)
\
{
0}
}
.

This completes the proof of the theorem.
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Thank you!
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