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Why are pipes cylindrical?

Let u : Ω → R be the streamline function.

Then−∆u = 1, in Ω

u = 0, on ∂Ω.

where ∆v :=
∑n

j=1
∂2v
∂x2j

. Moreover, assume that

∂νu = const. on ∂Ω.

This constant is a Lagrange multiplier corresponding to the assumption
that u maximises the torsional rigidity:

τ(Ω) := sup
v∈H1

0 (Ω)
v ̸=0

( ∫
Ω v dx

)2∫
Ω |∇v |2 dx

.
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Serrin’s Problem

Goal: Classify regions which admit solutions to the PDE and the
overdetermined conditions.

Theorem (Serrin, ‘71)

Suppose that Ω ⊂ Rn is a bounded domain with C 2 boundary. If there
exists a solution u ∈ C 2(Ω) ∩ C 1(Ω) that satisfies

−∆u = 1, in Ω

u = 0, on ∂Ω

∂νu = const., on ∂Ω

then Ω is a ball.

Proof relies on the powerful technique now known as the method of
moving planes.
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The fractional Laplacian

A nonlocal/integro-differential operator given by

(−∆)su(x) = cn,sP.V.

∫
Rn

(
u(x)− u(x + y)

) dy

|y |n+2s

where s ∈ (0, 1) and cn,s > 0 is a normalisation constant.

‘Fractional Laplacian’ because

(−∆)s ◦ (−∆)s
′
= (−∆)s+s′

and
lim

s→1−
(−∆)su(x) = −∆u(x).
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Parallel surface problem

Let Ω = G + BR where

A+ B := {a+ b such that a ∈ A, b ∈ B}.

G

Ω
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Suppose that G is a bounded open set in Rn with C 1 boundary, f : R → R
is locally Lipschitz, and Ω = G + BR .

Theorem (Dipierro, Poggesi, T, Valdinoci,‘22)

Suppose that there exists a non-negative function u ∈ C 2(Ω) ∩ L∞(Rn)
that is not identically zero and satisfies

(−∆)su = f (u) in Ω

u = 0 in Rn \ Ω

u = const. on ∂G .

Then u is radially symmetric, u > 0 in Ω, and Ω (and hence G) is a ball.

s = 1: [Ciraolo, Magnanini, Sakaguchi, ‘15]

0 < s < 1 and f ≡ 1: [Ciraolo, Dipierro, Poggesi, Pollastro, Valdinoci,
‘21]
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Overview of proof

Let e ∈ Sn−1, µ ∈ R, and Tµ = {x · e = µ}. Define

vµ(x) = u(x)− u(reflection of x across Tµ).

Goal: Prove that vµ ≡ 0 when µ = λ := critical time.
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Overview of proof

Step 1: For all µ ∈ [λ,Λ), vµ ⩾ 0 in H ′
µ.

By linearity of (−∆)s , for all µ ∈ (λ,Λ),(−∆)svµ + cµvµ = 0, in Ω′
µ

vµ ⩾ 0, in H ′
µ \ Ω′

µ

where

cµ(x) =

{
− f (u(x))−f (u(x ′µ))

u(x)−u(x ′µ)
, if u(x) ̸= u(x ′µ)

0, if u(x) = u(x ′µ).

where Ω′
µ is the reflection of the RHS of Ω across Tµ, x

′
µ is the reflection

of x across Tµ, and H ′
µ is the halfspace on the LHS of Tµ.
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Overview of proof

Step 1: For all µ ∈ [λ,Λ), vµ ⩾ 0 in H ′
µ.

For simplicity, assume that cµ ≡ 0, so for all µ ∈ (λ,Λ),(−∆)svµ = 0, in Ω′
µ

vµ ⩾ 0, in H ′
µ \ Ω′

µ.

In the local case, Step 1 follows immediately from the maximum principle.
However, the maximum principle for nonlocal operators requires that
vµ ⩾ 0 in all of Rn which is an issue!

Proposition (Fall, Jarohs, ‘15)

Let Ω ⊂ Rn
+ be an open, bounded set and suppose that u satisfies:

(−∆)sv = 0 in Ω, v ⩾ 0 in Rn
+ \ Ω, and v is antisymmetric with respect

to ∂Rn
+. Then v ⩾ 0 in Ω.
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Strategy of proof: method of moving planes

Step 2: For µ equal to the critical time λ, vµ ≡ 0 in Rn

By the (antisymmetric) strong maximum principle, either vλ ≡ 0 in Rn or
vλ > 0 in Ω′

λ. For the sake of contradiction, suppose that vλ > 0 in Ω′
λ.

Two cases:

Case 1: There exists p ∈ (G ′
λ ∩ ∂G ) \ Tλ ⊂ Σ′

λ since ∂G is a parallel
to ∂Ω. But u is constant on ∂G , so we have

vλ(p) = u(p)− u(reflection of p) = 0

which contradicts assumption.
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λ. For the sake of contradiction, suppose that vλ > 0 in Ω′
λ.

Two cases:

Case 2: There exists q ∈ Tλ ∩ ∂G such that e is tangent to ∂G at q.
Since u is a constant, we have

∂vλ
∂e

(q) = 0.
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Two cases:

Case 2: There exists q ∈ Tλ ∩ ∂G such that e is tangent to ∂G at q.
Since u is a constant, we have

∂vλ
∂e

(q) = 0.

This contradicts the following Hopf-type lemma:

Lemma (Dipierro, Poggesi, T, Valdinoci,‘22)

Suppose that c ∈ L∞(B+
1 ), u ∈ C 2(B1) ∩ L∞(Rn) is antisymmetric with

respect to {x1 = 0}, and satisfies (−∆)su + cu ⩾ 0 in B+
1 , u(x) ⩾ 0 in

Rn
+, u > 0 in B+

1 . Then
∂1u(0) > 0.
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Stability

Question: Suppose that, instead of well-posed PDE + overdeter-
mined condition, we have well-posed PDE + “almost” overdetermined
condition. Does this mean the region Ω is “almost” a ball?

We measure how close u is to being constant on ∂G via

[u]∂G := sup
x ,y∈∂G
x ̸=y

|u(x)− u(y)|
|x − y |

and we measure how close Ω is to being a ball via

ρ(Ω) := inf
{
R − r s.t. p ∈ Ω and Br (p) ⊂ Ω ⊂ BR(p)

}
.
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Some literature

[Aftalion, Busca, Reichel, ‘99] Serrin’s problem (with semilinearity):

ρ(Ω) ⩽ C
∣∣ log ∥∂νu − c∥C1(∂Ω)

∣∣−1/n

for some constant c .

[Ciraolo, Magnanini, Sakaguchi, ‘16] Parallel surface problem:

ρ(Ω) ⩽ C [u]∂G

[Ciraolo, Dipierro, Poggesi, Pollastro, Valdinoci, ‘22] Nonlocal parallel
surface problem with f = 1:

ρ(Ω) ⩽ C [u]
1

s+2

∂G
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Stability

In an upcoming work with Dipierro, Poggesi, and Valdinoci:

Theorem

Let G be an open bounded subset of Rn and Ω := G +BR for some R > 0
be such that ∂Ω is C 2. Moreover, let f ∈ C 0,1

loc (R) with f (0) ⩾ 0. If
u ∈ C 2(Ω) ∩ L∞(Rn) is non-negative and satisfies(−∆)su = f (u) in Ω

u = 0 in Rn \ Ω

then

ρ(Ω) ⩽ C [u]
1

s+2

∂G .
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Open problem: the optimal exponent

Open problem: Under reasonable assumptions on Ω, what is the optimal
α > 0 such that ρ(Ω) ⩽ C [u]α∂G?

For Gε such that

Gε + B1/2 =

{
x21

(1 + ε)2
+ |x ′|2 = 1

}
=: Ωε,

we have that ρ(Ωε) = ε and [uε]∂Gε ≃ ε. This suggests that α = 1
(as in the local case).

Nonlocality creates difficulties because it sees ‘mass that is far away’.
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(as in the local case).

Nonlocality creates difficulties because it sees ‘mass that is far away’.
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Open problem: the optimal exponent

Suppose that f ≡ 1 and [u]∂G is small, so that Ω is uniformly close to a
ball, say B1. Moreover, consider the situation when the reflected region is
precisely B1 and the critical plane in the direction e = e1 is {x1 = 0}:
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The reflected function vλ (at the critical time) is s-harmonic in B1,
so, by the nonlocal Poisson representation formula,

vλ(x) =

∫
Ω−\B−

1

(
1− |x |2

|y |2 − 1

)s( 1

|x − y |n
− 1

|(−x1, x ′)− y |n

)
u(y) dy

for all x ∈ B1.

Using that G ⊂⊂ B1 (Ω is uniformly close to B1) and regularity
theory for the fractional Laplacian, one can show that∫

Ω−\B−
1

δs∂Ω
δs∂B1

dy ⩽ C [u]∂G

and this is (in some sense) sharp. Here δ∂A := distance function to
∂A. This is also indicative of the general case.

If one can show that
∫
Ω−\B−

1

δs∂Ω
δs∂B1

dy ≃ ρ(Ω) as [u]∂G → 0+ then we

are done (kind of...), but this requires fine estimates up to the
boundary!
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Thank you for listening!
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