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Uniform vs nonuniform ellipticity

Consider the linear equation
—div(a(x)Du) =0.

(assume that a(-) is symmetric).
This is called uniformly elliptic if

highest eigenvalue of a(x)

u : <
Xp lowest eigenvalue of a(x)

It is called nonuniformly elliptic otherwise, and typically serves to
prove regularity of u.
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Uniform vs nonuniform ellipticity

In the nonlinear case
—-divA(Du) =0

one looks at the differentiated (linearized) equation
—div(a(x)DDsu) =0, a(x) = 9;A(Du(x))
to get gradient estimates. Therefore, if ellipticity is described by
g1(|z))Ly < 9:A(z) < g2(|2|)La,

then uniform ellipticity occurs when

eld) ( g2<|z|><oo).

supR(z) =sup

< o0
I2| 12| &1(|z]) z1>1 81(12[)
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Examples of uniformly elliptic equations

o Laplace
-Au=0;

o p-Laplace (degenerate, but uniformly elliptic)
~Apu = ~div(|DulP2Du) = 0, p>1.

o In general
—-divA(Du) =0

under the classical assumptions (Ladyzhenskaya &
Uraltseva)
|2|P1y < 0,A(2) $ |2|P°Ly.

In such cases the ellipticity ratio R(z) stays uniformly bounded
away from zero and infinity. J
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More uniformly elliptic operators

Uniformly elliptic equations are not necessarily of polynomial type.
For instance
—div (&(|Du|)Du) = f

is uniformly elliptic provided

=/
-1<iz< GAOL

G

Indeed it follows that

<s;<oco forevery t>0.

max{1l,s,+ 1}

R(z) S .
(2) min{1,i;+1}

These operators have been recently the object of intensive
investigation (see papers of Baroni, Beck & Mingione, Byun,
Cianchi & Maz’ya, Diening, Lieberman, Stroffolini amongst
the others).
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T he non-autonomous case is more delicate

For equations of the type
—-divA(x,Du) = f
we describe ellipticity in the more flexible way
g1(x,|2)lg < 0-A(x, z) < g2(x, |z|)La,

and we consider two ratios:

o the classical pointwise ellipticity ratio
X, |z
R(X,Z) - g2( 7| |)
g1(x,|z])
o and the new nonlocal one

SUPyeB g2(X7 |Z|)
infxep g1(x,2])

R(z,B) :=
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T he non-autonomous case is more delicate

Obviously
R(x,z) <R(z.B) V xeB.

Consider the equation
div (|DulP™2Du + a(x)|Dul?Du) =0  0<a(x)<L
which is Euler-Lagrange equation of the double phase functional

W»[[|DW|P+3(X)|DW|Q]dx 1<p<q.
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Two notions of uniform ellipticity

Then
R(x.2) < mz.ax{l,q— 1}
min{l,p-1}
while
R(2,B) ~ Jallim(e)l2l7? > 00 as 2] o0

The equation is therefore pointwise uniformly elliptic, but the
nonlocal ellipticity ratio blows up, cf. D. & Mingione (ARMA
2021) for a discussion.
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Linear equations

Solutions to
—Au=—-div(Du)=0

are smooth. Adding coefficients (ingredients)
~div (A(x)Du) = —(A”(x)Dju)x, = 0.

preserves as much regularity as the degree of smoothness of
coefficients allow.

This holds provided the matrix A(-) is bounded and elliptic

vlig <Alx) < Ly.
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Classical Schauder estimates

As Du and A(x) directly couple in the equation, we have
A() € C% — Du e C% O<ax<l.

This kind of results where first obtained by Hopf (1929),
Caccioppoli (1934) and Schauder (1934), in various forms, and
are today known as Schauder estimates. The original proofs involve
heavy potential theory.

Modern proofs have been given by Campanato, Trudinger and
Leon Simon. All the proofs rely, in a way or in another, on
perturbation methods. This means that regularity estimates for
solutions to

—div (A(x)Du) =0

are obtained via comparison with solutions to equations with more
regular coefficients, as for instance frozen equations

—div (A(xo)Dv) =0.



Nonlinear Schauder estimates

The nonlinear theory is a more recent story, dating back the
beginning of the 80s.

A model example is given by the p-Laplacean equation with
coefficients

~div (c(x)|DulP?Du) =0,  O0<v<c()eCo.
The possibility of Schauder estimates in the nonlinear case relies on
the fact that solutions v to frozen equations
~div (c(x0)|Dv|P™2Dv) = 0

still enjoy good regularity estimates (this is Uraltseva-Uhlenbeck
theory).

In this case we can say that Du is Holder continuous for some
exponent. J
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General uniformly elliptic equations

These estimates hold for general equations of the type
—-divA(x,Du) =0
under the classical assumptions (Ladyzhenskaya & Uraltseva)

|Z|p_2]1d S azA(Xa Z) N |z|p_2]1d
|A(x1,2) = A(x2, 2)| < L|xg — xa|®|2|P7L.

This is due work of Giaquinta & Giusti, Manfredi, Di
Benedetto, Lewis, Tolksdorf. For a general approach see also
Kuusi & Mingione (JFA 2012). Hélder continuity can be relaxed
up to Dini continuity, see also recent work of Maz'ya & McOwen
(Arxiv).
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Freezing & Comparing

@ Summarizing, both in the linear and in the nonlinear case,
perturbation methods are crucial.

@ Such methods work provided all the estimates involved are
homogeneous and therefore can be matched and iterated.

o This happens in the uniformly elliptic case, but not in the
nonuniformly elliptic one.

@ Proving Schauder estimates in the general nonuniformly elliptic
case has remained an open problem.
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Schauder estimates in the variational setting

When dealing with functionals of the type

w [Q c(x)F(Dw) dx

(think for instance of F(Dw) = |Dw|P) we can use the
Euler-Lagrange equation

—div (¢(x)9,F(Du)) =0.

In this case regularity follows from those known for equations.
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Non-differentiable functionals

What happens when dealing for instance with classical model
functionals as

W fQ[F(Dw) +h(x, w)]dx

when v — h(-, v) is not differentiable, but only Holder? As h(-) is
not differentiable, the Euler-Lagrange equation

—-divd,F(Du) + O,h(x,u) =0
does not exists.

These are treated in papers by Frehse, Giaquinta & Giusti, lvert,
Manfredi, from the beginning of the 80s, who still proved that Du
is locally Hoélder continuous. They still use perturbation
techniques, this time directly relying on minimality. Results also by
Kristensen & Mingione.
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Non-differentiable functionals

These arguments can be carried through up to general functionals
of the type

w ch(X, w)F(Dw) dx
therefore falling outside the realm of traditional Schauder estimates.

In this case crucial use is made of the fact that v s a priori known
to be Haolder continuous, so that

x = c(x,u(x)) is Holder continuous.
This extra information comes directly from growth conditions
|z|IP s F(x,w) S |zlP +1

via standard De Giorgi’s theory.
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Nonuniformly elliptic classics < 70s

Ladyzhenskaya & Uraltseva (Book + CPAM 1970)
Gilbarg (1963)

Stampacchia (CPAM 1963)

Hartman & Stampacchia (Acta Math. 1965)

Ivockina & Oskolkov (Zap. LOMI 1967)

Oskolkov (Trudy Mat. Inst. Steklov 1967)

Serrin (Philos. Trans. Roy. Soc. London Ser. A 1969)
Ivanov (Proc. Steklov Inst. Math. 1970)

Trudinger (Thesis, Bull. AMS 1967, ARMA 1971)
Leon Simon (Indiana Univ. Math. J. 1976)
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Nonuniformly elliptic classics > 80s

(]

Trudinger (Invent. Math. 1981)

N. N. Ural'tseva & A. B. Urdaletova (Vestnik Leningrad Univ.
Math. 1984)

Lieberman (Indiana Univ. Math. J. 1983)
Ivanov (Proc. Steklov Inst. Math. Book 1984)
Marcellini (ARMA 1987, JDE 1991, Ann. Pisa 1996)

Zhikov (Papers from the '80s, Math. of USSR-Izvestia. 1995,
Russian J. Math. Phys. 1997)

(7]
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lvanov's book.

Proceedings

of the
STEKLOV INSTITUTE
OF MATHEMATICS

Quasilinear Degenerate
and Nonuniformly Elliptic
and Parabolic Equations
of Second Order
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A Ladyzhenskaya & Uraltseva classic

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VoL xx1i1, 677-703 (1970)

Local Estimates for Gradients of Solutions
of Non-Uniformly Elliptic and Parabolic
Equations

O. A. LADYZHENSKAYA AND N. N. URAL'TSEVA
Leningrad University

Various classes of non-uniformly elliptic (and parabolic) cquations of second
order of the form
(% 1 Ug) gy = a(%, 4y u)
Ly 2l ) ( !
a6 u)EE >0 for  JE =

for all solutions u(x) of which maxqlu,| can be estimated by maxg|u| and
maxyg Jul, were discussed in [1] (see also [2]).2 The method used was intro-
duced in [3]. Tn the same paper a method was suggested for obtaining local
estimates of |,/ i.c., estimates of maxg [i,| in terms of maxg|u| and the
distance d(2', 3Q) of Q' < Q from the boundary Q. In a serics of papers
(concerning these see [4] and [5]) we have shown that this method is applicable
to the whole class of uniformly clliptic and parabolic equations. In the present
paper we investigate the possibility of applying it to non-uniformly elliptic and
parabolic cquations. It turns out that it is applicable, roughly speaking, to
those classes of [1] for which the order of nonuniformity of the quadratic form
a,(x, 4, 1,)&4, is less than two. The first part of this paper is devoted to the
proof of this assertion.

In the second part we analyze a different method of obtaining local estimates
for |u;] which is applicable to clliptic equations of the form

(1.2) —ﬁlia,(x. 4 u) + alx ty4) =0,
Sidy,

and embraces such interesting cases as equations for the mean curvature of a
1 We shall use the notation

=, apm (g,
o = = (g W e

@3, wlavd, = ogal = VLS.
& :
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Trudinger's classics

THE DIRICHLET PROBLEM FOR NONUNIFORMLY
ELLIPTIC EQUATIONS'

BY NEIL S. TRUDINGER
Communicated by F. John, January 23, 1967
Introduction. Let 2 be a bounded domain in E". The operator
Qu = a¥(x, Uy Ue)thsa; + (, 4, 1s)

acting on functions u(x) € C*(@) is elliptic in Q if the minimum eigen-
value \(x, u, p) of the matrix [a%i(x, u, p)] is positive in @XE**1.
Here

=y v th), P =y pa)

and repeated indices indicate summation from 1 to n#. The functions
afi(x, u, p), a(x, u, p) are deﬁned in QX E~H, If furthermore for any
M>0, the ratio of the to minimum

[a%(x, u, p)] is bounded in @X(—M, M)XE", Qu is called wmi-
formly elliptic. A solution of the Dirichlet problem Qu=0, u=¢(x) on
8Qis a CO(I)NC*(Q) function u(x) satisfying Qu=0 in  and agreeing
with ¢(x) on Q.

When Qu is elliptic, but not necessarily uniformly elliptic, it is
referred to as nonuniformly elliptic. In this case it is well known from
two dimensional considerations, that in addition to smoothness of the
boundary data 99, ¢(x) and growth restrictions on the coefficients of
Qu, geometric conditions on 32 may play a role in the solvability of
the Dirichlet problem. A striking example of this in higher dimen-
sions is the recent work of Jenkins and Serrin [4] on the minimal
surface equation, mentioned below.

On the Regularity of Generalized Solutions
of Linear, Non-Uniformly Elliptic Equations
NerL S. TRUDINGER

Communicated by J. C. C. Nrrscae

1. Introducton
‘We consider in this paper the simplest form of a second order, linear, diver-

gence structure equation in n variables, namely

an i(n"(x)f—")-n

where the coelficients a'/, 1 5/,jSn, are measurable functions on @ domain @
space

Equation (1.1) s ellptic in 2 if the coeffcient matrix 4f(x) =a*/(x)) is positive
lmost everyvhere in 2. Let 463 deote the minimum igeaalue of o/(9) and

2 H)= sup la"(x)|
1sigen

s0 that

a3 HIEFSa &g SnEIE?

for all £€E", xeQ. We will say that equation (1.1) s wniformly eliptic in Q it m
function 7(x)=k()/A(x) is essentially bounded in Q. If 7 is not n

ed, then cauation (1.1 i releee to a8 naw-arformly elptic. We note ».m
that unil ich 4~ is unbounded
referred to as degenerate elliptic (9]

Uniformly elliptic equations of the form (1.1), with bounded 4~ and 4, have
e esensively stdied i the leratre, (w0 of the mafor resulsbeing o Fdker
estimate for generalized solutions, due to DEGi0RG1 [1] and Nasw [11], and a
Harmack inequaliy, due to Moseh (7). The purpose of this paper i 1o extend
e et o i of ooy sl equation. n order 1o ecomplich
this, our methods differ substantially from those previously proposed and hence.

An essential difference is that in order to obtain the stronger results we need (o
extract more information from the equation.




A Leon Simon's classic

Interior Gradient Bounds for Non-uniformly
Elliptic Equations

LEON SIMON

In (1] Bombieri, De Giorgi and Miranda were able to derive a local interior
gradient bound for solutions of the minimal surface equation with n independent
variables, n 2, thus extending the result previously established by Finn [2]
for the case n = 2. Their method was to use test function arguments together
with a Sobolev inequality on the graph of the solution (Lemma 1 of [1]). A much
simplified proof of their result was later given by Trudinger in [12].

Since the essential features of the test function arguments given in [1] general-
ized without much difficulty to many other non-uniformly elliptic cquations,
it was apparent that interior gradient bounds could be obtained for these other
equations provided appropriate analogues for the Soboley inequality of (1] could
be established. Ladyzhenskaya and Ural'tseva obtained such inequalities
({4, Lemma 1) for a rather large class of equations, including the minimal
surface equation as a special case. They were thus able to obtain gradient bounds
for this class of equations.

In §2 of [5] a general Sobolev inequality was established on certain generalized
submanifolds of Euclidean space. In the special case of nonparametric hyper-
surfaces in R**" of the form ., = u(x), where u is a C* function defined on an
open subset @ C R, the incquality of (5] implies

) {[u ey dt}‘"””" sef [{Z y"h,‘h,}m h un]n de

for each non-negative " function & with compact support in @, where
=+ |Dupy”

g = b —vwi,  we=w/y, A j=1,-m

Lo
Ho= v 3 0",

and where ¢ is a constant depending only on n. (See the discussion in §2 below.)

The quantity H appearing in this inequality is in fact the mean curvature of

the hypersurface z,,, = u(v) and in the special case when H = 0 (i.e. when u
821
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The variational setting

The variational setting

w / F(Dw) dx
Q
turns out to be the most appropriate for local estimates.

The Euler-Lagrange reads as
—-divd,F(Du) =0

Nonuniform ellipticity reads as

highest eigenvalue of 6ZZF(z)

lim R z) =
|z|—>o00 0.F(2) = z|—>oo lowest eigenvalue of 9,,F(z)
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Polynomial Nonuniform Ellipticity

This happens, when, for |z| is large,
Ro,r(z) ~ |z° for some 6 >0
These are usually formulated prescribing
|z\p_21[d $0.,.F(2) S |z|q_2]Id
so that
Ro,r(z) $12|97P, for |z| large, 1<p<gq.

These are called (p, g)-growth conditions in Marcellini’s
terminology. Conditions of the type

g<1+o(n)
p

are in general sufficient (Marcellini) and necessary (Giaquinta and
Marcellini) for regularity of minima.
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One moment back to uniform ellipticty

o Classical fact 1. For solutions to
—div (¢(x)|DulP™?Du) = 0

and, more in general, uniformly elliptic equations with
p-growth we have

c(+) is Holder = Du is Holder.
o Classical fact 2. For minima of non-differentiable functionals

WHL[C(X)|DW|p+h(X, w) ] dx

and, more in general, uniformly elliptic integrals with
p-growth, we have

c(+),h(x,-) are Holder = Du is Hélder.
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Two classical issues

@ Open problem 1. Schauder for nonuniformlly elliptic
equations. For solutions to

—div(c(x)A(Du)) =0, Ra(z) ~|z|97P

and more general, equations with polynomial nonuniform
ellipticity
c(+) is Holder = Du is Holder.

@ Open problem 2. Non-differentiable functionals. For
minima of non-differentiable functionals

w fQ[F(Dw) +h(x, w)]dx

and, more in general, of integrals with polynomial nonuniform
ellipticity, it holds that

coefficients (like h(-.-)) are Holder = Du is Holder.
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Lieberman’s review.

35

AMERICAN MATHEMATICAL SOCIETY University Degli Studi di Parma &2
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MR0749677 (85k:35077) Reviewed ations
Giaquinta, M. (I-FRNZ); Giusti, E. (I-FRNZ) From Referenc
Global C!“-regularity for second order quasilinear elliptic equations in divergence form. From Review:
J. Reine Angew. Math. 351 (1984), 55-65.

3560 (35B65 49A22) Os-Fx
Review PDF | Clipboard Make Link

2

It is by now classical that solutions of the Dirichlet problem for a divergence form elliptic equation: divA(x, u, Du) = B(x,u, Du) in
Q, u=g on oQ, are Ck< if ¢ € C*= for any nonnegative integer k # 1, under suitable hypotheses on the coefficients A and B.
Moreover, the reviewer has proved this result for k = 1 [Comm. Partial Differential Equations 6 (1981), no. 4, 437-497;
MR0612553] assuming, among other things, that A has Holder continuous first derivatives and that B is Holder continuous.
The present paper provides an alternative proof of this regularity result for k = 1 by means of some interesting techniques
developed by the authors to study the regularity of minima of functionals [Invent. Math. 72 (1983), no. 2, 285-298;
MR0700772]. Basically, they freeze the coefficient vector A at a point and then use a perturbation argument.

As well as being applicable to minimization problems, their method allows weaker smoothness hypotheses, namely, A is C!
in Du and C%¢ in x and u, and B is bounded and measurable. In addition, bounded weak solutions of the Dirichlet problem can
be studied directly when certain growth properties are imposed on the coefficients for large Du.

A comment needs to be made concerning their brief application to equations when their growth properties fail. As they point
out, such equations fall under their considerations provided a global gradient bound has been established; however, this
gradient bound has only been proved when A is differentiable with respect to all its arguments, and in many cases more
smoothness of the coefficients is needed. The results of this paper are thus much more striking when applied to uniformly
elliptic equations than to nonuniformly elliptic ones.

Reviewed by Gary M. Lieberman
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lvanov's book - On Ladyzhenskaya & Ural'tseva's result

THEOREM OF LADYZHENSKAYA AND URAL'TSEVA (83). Suppose that a function
u € C¥(Q) satisfying the condition
mnax|u] <m, m;leuI <M, (2.5)

is a solution of (1.1) in a bounded domain & C R", n > 2, and that equation (1.1) is
elliptic at this solution in the sense that

@i(x, u(x). Vu(x)E&; > 6, v =const> 0,6 <R, x <l (26)
Suppose that on the set Fq, p =8 X{Jul<m} X (|p|< M)} the functions
a'(x,u, p),i, j=1,...,n,and a(x, u, p) satisfy the condition
da"’ 9a'/|  |da"

el R ol B B

ox ap

Then there exists a number y € (0, 1), depending only on n, v, M and M, such that for
any subdomain @', &’ c Q,

ja’) + +lal< My =const >0 on %, . (2.7)

”v““(‘Y(ﬁ') < €y (28)

where ¢, depends only on n, v, M, M,, and the distance from Q' to 3. If the domain
belongs to the class C* and u = @(x) on 3R, where ¢ € C%(R), then

IVullcr gy < €2y (2.9)
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lvanov's book

terms of the majorants &, and &,. Here it is also important to note that the structure
of these conditions and the character of the basic a priori estimates established for
solutions of (2) do not depend on the “parabolicity constant” of the equation. This
determines at the outset the possibility of using the results obtained to study in
addition boundary value problems for quasilinear degenerate parabolic equations. In
view of the results of Ladyzhenskaya and Ural’tseva (see [80]), the proof of classical
solvability of the first boundary value problem for equations of the form (2) can be
reduced to establishing an a priori estimate of maxy|Vu|, where Vu is the spatial
gradient, for solutions of a one-parameter family of equations (2) having the same
structure as the original equation (see §2.1).
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Giaquinta & Giusti's comments

Our technique is a nonlinear version of the well-known method of freezing the
coefficients A’ at a point x,, and then using a perturbation argument. A special form of
De Giorgi’s theorem is needed that requires linear growth for the A’ and at most a
quadratic growth for B. However, the general case of coefficients 4’ and B of arbitrary
growth can easily be reduced to this once a gradient bound has been proved. This happens
for instance for the minimal surface equation

D
divd——2 %0
/1+|Dul?
for which a gradient estimate for C"* boundary values has been proved in [10] (see
also [13]).
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Solutions - Nonuniformly elliptic Schauder theory

@ Solutions in a paper by D. & Mingione 2021.

o Catches both cases of non-differentiable functionals and
equations with Holder continuous coefficients.

o Introduces a hybrid perturbation approach which is direct and
does not rely on freezing and comparing.

o Crucial point in the proof is to get /*-bounds for the
gradient.
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Schauder's theory does not always hold...

WHL[|DW|P+3(X)|DW|<I] dx

l<p<g, 0<a(-)eCo(Q)

To hope for regularity, the ellipticity ratios cannot blow up too fast:

9 1+o(n, ).
p

This is confirmed by counterexamples.

o If l<p<n<n+ac<g, functionals with (p, g)-growth may admit a
minimizer u ¢ W,i’cq(Bl). « Esposito, Leonetti & Mingione JDE
(2004).

@ For any £ > 0, there exists a minimizer u € WP(Q) of functional
with (p, g)-growth, such that dimy (X(u)) > n— p—e. The singular

set is a fractal of Cantor type. « Fonseca, Maly & Mingione ARMA
(2004); Balci, Diening & Surnachev Calc. Var. 2020.
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...but sometimes yes

Theorem (Baroni, Colombo & Mingione Calc. Var. 2018)

Let u be a minimizer of the Double Phase energy
W fQ [|Dw|P + a(x)|Dw|?] dx

l<p<qg, 0<a()eC®(Q)
Then:

loc

9¢1+9 — ye Cl’BO(Q).
p n

@ Previous results by Colombo & Mingione, ARMA (2 papers)
2015.

@ The bound on g/p is sharp, thanks to counterexamples of
Esposito, Leonetti & Mingione (JDE 2004), Fonseca, Maly &
Mingione (ARMA 2004).
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Half-way nonuniformly elliptic

The double phase functional

WH[Q(|DW|P+a(x)|DW|q)dxs[QF(X, Dw) dx

allows for treating Holder coefficients but is pointwise uniformly
elliptic, in the sense that

R(x,2) = highest eigenvalue of 0,,F(x, z)

lowest eigenvalue of 0,,F(x,z)

sup,.p highest eigenvalue of 9,,F(x, z)
inf e lowest eigenvalue of 0,,F(x, z)

R(z,B) =
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Pointwise uniform ellipticity - special structures

Regularity results available for special structures:

w [Q F(x,|Dw]) dx

Acerbi & Mingione ARMA 2001.

Baasandorj, Byun & Oh JFA 2020; Calc. Var. 2021.

Baroni, Colombo & Mingione ARMA 2015; Calc. Var. 2018.
D. & Oh JDE 2019.

Hasto & Ok JEMS 2021.

Karppinen & Lee IMRN 2021.

®© 6 6 6 o o

In all such cases we have that the frozen integrand
z = F(x0, 2))

is uniformly elliptic.
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Nonuniformly elliptic and nonautonomous functionals

@ This does not happen for basic model examples as

wer [ cG)F(Dw)dx= [ Fix,Dw)ds
under genuine nonuniform ellipticity
2Py < 0,,F (2) < 2|9 %14
o Freezing yields

highest eigenvalue of 0,,F(xp, z)

Rogr, & - —
0:F00) ™ Jowest eigenvalue of 9., F(xp, 2)

N highest eigenvalue of 9,,F(z) N

~ : ~ |29
lowest eigenvalue of 9,,F(z)
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Variational Schauder

Theorem (D. & Mingione, 2021)

Let ue WYL be a minimizer of the functional

w /Q e(x)F(Dw) dx

where
° |z|p_2]Id $0,,F(2) S ]z|‘7‘2]Id
o c() e CP(Q)

o and

Then Du is locally Hélder continuous in Q.

.
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Classical Schauder estimates

For solutions to suitable Dirichlet problems

p(q-1)

u e Whr T (Q),

—-divA(x,Du) =0 in Q
u=uy on o,

where
|2|P~%1y $ 0:A(x, 2) $ |2|9°Ly
we have
Theorem (D. & Mingione, 2021)
If
94,1 (g)z’
p 5\n

then there exists a solution to the above Dirichlet problem such
that Du is locally Hélder continuous in Q.
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Non-differentiable functionals #1

Theorem (D. & Mingione, 2021)

Let ue WYL be a minimizer of the functional

W fQ[F(Dw) + h(x, w)] dx

where
o |2|P 2y $0,.F(2) S |29y, 1<p<gq
o |h(x,v1) = h(x,v2)| S [vi —v2|*, e (0,1]

o and
g31+1(1—9)9.
p 5 p)n

Then Du is locally Hélder continuous in Q.
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Non-differentiable functionals #2

Theorem (D. & Mingione, 2021)

Let ue WY be a minimizer of the functional
w /S;[F(DW) + g(x,w, Dw) + h(x,w)] dx
where F(-) and h(-) are in Theorem 1, and

o zw g(-,z) is convex and |0,,9(-, 2)| § |z|" 2

@ |g(x,v1,2) - g(x,v2,2)| & (|X1 - x|* + vy — v2|a) |z|Y

e a+y<p
o and
ST
p p Jn
Then Du is locally Hélder continuous in Q. )
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Non-differentiable functionals #3

Theorem (D. & Mingione, 2021)

Let ue WY be a minimizer of the functional

w [Q c(x,w)F(Dw) dx

where
o 2Py $ 0,,F(2) S |2|9%14
0 ¢()eC%(Q), ae(0,1]

@ p>n
2.
2$1+1(1_”)(%)
p 5 p/\n

Then Du is locally Hélder continuous in Q.

o and

.
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Some comments

o The role of the assumption
p>n

compensates the lack of a priori continuity of u which is
known in the case p = g.

o When p = g by De Giorgi's theory the local Hélder continuity
of u is just implied by

|zIP S F(x,v,z) $|z]P +1

with no convexity used.

@ p > n implies that u is Holder continuous, but this fact is not
used in the proof.

o This assumption could be optimal.
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A classical theorem of Stein

Theorem (Stein Ann. Math. 1981)

Dw e L(n,1) = w is continuous

@ Recall that

Fet(tn) = [ (N0 1FG M) 2 <

@ This is the borderline case of Sobolev-Morrey theorem.

@ Combining Stein's theorem with standard Calder6n-Zygmund theory
we have

Theorem (Stein Ann. Math. 1981)

—Auel(n, 1) = Du is continuous,

o Cianchi J. Geom. Anal. (1993).
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A Nonlinear Stein theorems

Theorem (Kuusi & Mingione, Calc. Var. 2014)

If ue WHP solves
~div (e(x)|DulP™2Du) = f

where c(-) is Dini-continuous and bounded away from zero. Then

fel(n,1) = Du is continuous.

See also Kuusi & Mingione, ARMA 2013, JEMS 2018.
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Stein theorems for polynomial nonuniform ellipticity

Consider the functional
wrs [[F e Dw]) = £(x) - w] dx

with
|z|”_2]1d S 0 F(x,]2]) € |z|q_2]Id.

Theorem (D. & Mingione, ARMA 2021)

Let ue WHL(Q) be a vector-valued minimizer of the functional and
assume that

x — 8,F(x,-) e Wh and ﬂ<1+l_l

p n d
Then

fel(n,1) = Du is continuous.

See also Beck & Mingione, CPAM 2020.
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Non-differentiable functionals #1

Theorem (D. & Mingione, 2021)

Let ue WYL be a minimizer of the functional

WHfQ[F(DW)m(X, w)] dx

where
° |z|P_2]Id $0,,F(2) S |z|q_2]Id

° |h‘(Xa Vl)_h(X7V2)|S|V1_V2|aa OéE(O,].]

o and
231+1(1—3)9.
p 5 p)n

Then Du is locally Hélder continuous in Q.
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A new Lorentz borderline condition

Theorem (D. & Mingione, 2021)

Let ue WYL be a minimizer of the functional

WHL[F(DW)+h(X, w)] dx

o 2Py $ 0,,F(2) S |2|9%1y
° |h‘(Xa Vl)—h(X,V2)|Sf(X)|V1—V2’a, OZE(O,].]
o fel(n/a,1/2)

o and

Then Du is locally bounded in .
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Escaping polynomial nonuniform ellipticity

We consider nonuniformly elliptic functionals with fast growth of
the type

v»—>_/Qexp(|Dv|p)dx, p>1,

and, more in general, of the type

v»—>v/ﬂexp(exp(...exp(|Dv|”)...))dx, p>1.

These have been considered at length in the literature:
@ Duc & Eels (Harmonic type mappings)
o Lieberman
o Marcellini
o L. C. Evans (weak KAM theory).
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Escaping polynomial nonuniform ellipticity

Consider functional

W fQ () [exp(1n.(x) exp(.. . exp(12(x)[Dw[P¥) .. )) = £(x) - w] dx

Theorem (D. & Mingione, ARMA 2021)

Let ue Wkl)’cl(Q) be a vector-valued local minimizer, under assumptions
@ D~,D~1,Dvy,,Dp € L™ for some € > 0
o fel(n1).

Then Du is locally bounded in Q.

Remark: Any rate of Holder continuity exponent of coefficients suffices.
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Applications to obstacle problems

w ’Crm?z)[Q'yl(x)exp(exp(...exp('yz(x)|DW|p(X)) ...))dx
K (Q) = {W e WEL(Q): w(x) > () in Q} .

loc

After approximation and linearization, solutions to obstacle problems can
be rearranged as a solutions to

~diva,F(x,|Du|) = f |f| s |D?4| +|Dep| + 1,

u — min fQ[F(X,|DW|) fow]dx.

@ Fuchs, Nonlinear Anal. 1990.
o Fuchs & Mingione, Manuscripta Math. 2000.
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Obstacle problems

Consider functional

w5 exp(11() exp(... . exp(12(x) | Dw[))...)) dx

Theorem (D. & Mingione, ARMA 2021)

Let ue V\/kl)’cl(Q) be a scalar constrained local minimizer (in the class
K.y (2) of functions lying above the obstacle 1)) under assumptions

@ D~,D~1,Dvy,,Dp e L™ for some € > 0
@ D*)pelL(n1).
Then Du is locally bounded in Q.
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Sharpness of elL(n1)

In the simplest, linear case

u— min f|DW|2dX
Ko(Q) J

the linearization procedure leads to
-Au-= —1{,_,:1/,} Nqp=f,
By standard Calderén-Zygmund theory we have

Apel(n1) <= D*pel(n1).

@ Cianchi J. Geom. Anal. 1993.
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Bella & Schaffner Anal. PDE 2020.
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