Some recent results on multilinear

pseudo-differential operators

Asia-Pacific Analysis and PDE Seminar
Zoom
June 15, 2020.

Akihiko Miyachi (Tokyo Woman’s Christian Univ.)



In this lecture, I will survey some recent results on bilinear Fourier
multiplier operators. Although most of the results are extended to the
case of multilinear pseudo-differential operators, I will restrict to the
bilinear case and to the case of Fourier multiplier operators.

The topics will be

1. Bilinear Fourier multipliers of HOrmander-Mihlin type
2. Multipliers of exotic class

3. Generalization of the bilinear exotic class

Some of the results are based on my joint works with Naohito Tomita
(Osaka Univ.) and Tomoya Kato (Gunma Univ.).



1. Bilinear Fourier multipliers of HoOrmander-
Mihlin type

1-1. Bilinear Fourier multiplier operators

For o € L°(R"™ x R™) and for f,g € S(R"), we define

To(f.9)(@) = [ ™ o (e n) F(©)5(n) dgan

= K(z —y,x — 2)f(y)g(z) dydz, =xe&R",
R xR"

where A denotes the Fourier transform and K is the inverse Fourier
transform of o. The operator T, is called the bilinear Fourier multi-

plier operator and the function o is called the multiplier.



If X,Y,Z are function spaces on R"™ equipped with quasi-norms, and if
there exists a constant A such that

1To(f DIz < Allfllxllglly
forall feSNX and all ge SNY, then we write
To . X XY — Z.

The smallest constant A is denoted by ||Ty||xxy—2-

If A is a class of multipliers, we denote by Op(A) the class of all
operators T, correspondingtooc e A. If T, : X xY — Z for all o € A,
then we write

Op(A) C B(X XY — Z).



Example 1. Cauchy integral on a curve:

u/ f(y) dy
Rz —y+i(A(z) — A(y)) 7
where A is a given function on R with A’ €¢ L>®(R).
If ||A']| o is small,

f(y) _ <f40r> Ay))*
/R r—y+i(A(x) — A(y)) kzo( 1) / — )kt f(y)dy.

The term for £k = 0 is the Hilbert transform.
The term for k=1

A(x) — A(y)
Caf(@) = |
R (z—y)?
is called Calderon’s commutator.
If we write a = A’, then A(x) — A(y) = [; a(t) dt and

f(y)dy

Caf(@) = [ _ ™= Dim(e, n) f(&)aln) dedn,

R xR
where

1
m(€,n) = —mi /O sign (€ + tn) dt



"

0 if £€<0,¢({+n<0,
(&+mn)/n if £€<0,&4+n>0,

= —7r1 ¥

|1 if &£€>0,&4+n>0.
n
£+
n
0 1
RS
1
0
_£
n

m is homogeneous of degree 0 and Lipschitz continuous in R2\ {0}.



Example 2. For D5(f) = (|€]5f)V, the inequality

ID*CfDle S ND° fllpellglipoe + £ lLeellD°glle, 1 <p < oo,

is called the Kato-Ponce inequality.

To prove this inequality, notice that

D*(fg) = [ 2" Mie 4 n)® f(©)g(n) dedn.

Take functions ®1(&,7) and ®5(&,7n) such that
1, Py € CP(R?™\ {0}),
®1 and P, are homogeneous of degree O,

§7# 0 on supp Py,

n 7 0 on supp Py,
1+ dp =1 on R?"\ {0},

and write

(1)



D*(fg)

_ Driz-(£4n) €+ 711° s o Apern
il T oy(€,m) T (D?f)"(§)g(n) dédn

&+ nl°
bls

g(n)(D*g)"(n) dédn.

2miz-(§+mn)
+ [ e Do (€, m)

The Fourier multipliers

ma(€n) =<D1(£,?7)|£|_g|;7|  mae,m) =¢2(£,?7)|§|_:|;7| ,

are not smooth around £ +n =0 if s is not an even integer.



The following is the most fundamental result on the boundedness of
bilinear Fourier multiplier operators.

Theorem A. (Coifman-Meyer 1978, Kenig-Stein 1999, Grafakos-
Kalton 2001) If

0205 m (&, m)| < Co (€] + In|)~1I=1A (A-1)
for all o, 3, then
Ty, : HP x H1 — L" (A-2)

for all p,q,r € (0, oco] satisfying 1/p+1/q = 1/r, where (A-2) should
be replaced by T}, : L°° x L®® — BMO when p=q = r = oc.

HP, p > 0, are the real Hardy spaces.
Recall that HP = LP if 1 < p < 0.

The condition (A-1) is sometimes called the Hormander-Mihlin type
condition.



1-2. Nonsmooth multipliers of HOormander-
Mihlin type

We want to refine Theorem A so that we require only limited differen-
tiability of m.

T he first results in this direction was given by Tomita in 2010.

We use the function W such that

(W e CR(R™), suppW C {¢eR? |27 <|¢| <2},
S w(¢/27) =1 for all ¢ € R\ {0}.

| j€z

N\

For functions on R2?, we define the Sobolev norm by

||G||WS(R27L) = [|[(1 + |Z|)Sé(z)||Lg(R2n)-



Theorem B. (Tomita 2010) If s > n, then

”Ta-”prLq_)L?“ S Slelg ||U(2])\Il(')||WS(R2n)
J

for all 1 < p,q,r < oo satisfying 1/p+1/q = 1/r.

Grafakos-Si (2012) extended Tomita's theorem to r < 1 by using LA
based Sobolev norm with 1 < X\ < 2.



We can refine Theorem B by using the product type Sobolev norm

G lyo1.02)cryzy = 12 121D (L +122D%2G (1, 22l g2 (qmny2)

Theorem C. (M.-Tomita 2013) Let 0 < p,q,r < oo satisfy
1/p+1/q=1/r. If s1,s2 > n/2 and

s1>n/p—n/2, s2>n/q—n/2, s1+s2>n/p+n/q—n/2,
then
| To || Hpx HI— L7 S S}H% lo(27(&,n))P(E, "’7)||W(81,82)((Rn)2)’ (C-1)
Vis
where we replace HP x HY9 — L" by L x L°° — BMO in the

case p = q = r = oo. Conversely, if (C-1) holds with the same
replacement in the case p = q = r = oo, then sq,s2 > n/2 and

s1>n/p—n/2, sy>n/q—n/2, s1+s22>n/p+n/q—n/2.



2. Multipliers of exotic class

2-1. Bilinear Hormander class

Definition 1. For m e R and 0 < p <1, the class BS (R”) is defined
to be the set of all o(£,n) € C®°(R™ x R™) that satisfy

0¢00a(&,m)| < Cop(1 + [&] 4 [p)ym—PUel+IED,

This class BSém> (in a generalized form for symbols of bilinear pseudo-
differential operators) was introduced and studied by
Bényi-Maldonado-Naibo-Torres (2010),
Bényi-Bernicot-Maldonado-Naibo-Torres (2013),
Michalowski-Rule-Staubach (2014).



In the case p = 1, the class BSﬁO> (R™) is the class of Hormander-Mihlin
type multipliers, which are considered in Section 1. In this case, the
operators in the class Op(BS§O>) have appropriate integral kernel and
covered by the bilinear Calderon-Zygmund theory given by Grafakos-
Torres (2002). The results are parallel to the linear case. In particular,
we have the following.

Theorem D. (C Theorem A)
op(BS!”) ¢ B(HP x H1 — L") for all 0 < p,q,r < oo satisfying
1/p+1/q=1/r > 0. Also Op(BS\") ¢ B(L*® x L® — BMO).

However, in the case 0 < p < 1, the bilinear operators and the linear
operators have different features.
The class Bsém> with 0 < p < 1 is sometimes called the exotic class.



Recall the case of linear operators. The linear Fourier multiplier oper-
ator o(D),

o(D)f@@) = [ TEa()f(§)de, weR,

is bounded L2 — L2 if and only if ¢ € L (by Plancherel's theorem).

Extension of this result to the linear pseudo-differential operators,
o(X,D)f@) = [ " Ea(z,O)f(§)ds, zeR,

is the following well-known theorem.

Theorem E. (Calderon-Vaillancourt 1972) The linear pseudo
-differential operator o (X, D) is bounded L? — L? if the symbol
o satisfies ]838?0(3:,5)] < Cy -

Naive generalization of this theorem to the bilinear case fails.



Theorem F. (Bényi-Torres 2004) There exists a function o =
o(&,m) on R™ x R™ such that

880 (£,m)| < Cag

for all a,3, (1.e., o € BS 0>(IR{”) in our notation), and that 7, is
not bounded from LP x LY to L™ for any p,q,r € [1,00) satisfying

1/p+1/q=1/r.

This theorem says that the relation

Op(BSO (R")) C B(LPx L9 — L")
holds only if m < 0.



2-2. Critial m for the exotic class

Definition 2. Let 0<p <1, 0<p,g<oo, and 1/p+1/g=1/r. We
define

mp(p,q) = sup{m € R : OD(BS (Rn)) C B(HP x HY1 — L")},
where HP x HY9 — L" should be replaced by L x L — BMO in the

case p=q =1 = oo.

Theorem G.For 0 < p<1,0<p,gq< o0, and 1/p+1/q = 1/r.
Then my(p,q) = (1 — p)mo(p, g) and
1 1 1 1 1 1}

mO(p7Q)—_nmaX{— —y =1l —— — — =
2 P q T r 2

Notice that mqg(p,q) < —n/2 for all (p,q).



1__
J Ja
1/2
J1
J3
Jo
0 12 . L/p
(n/r—n it (1/p,1/q) € Jo,
—n/2 it (1/p,1/q) € J1,
mo(p,q) = { —n/q it (1/p,1/q) € Jo,
—n/p it (1/p,1/q) € Js,
(n/2—n/r it (1/p,1/q) € Ja.




The critical order m,(p,q) were implicitly given in the works of several
authors. In particular, Boundedness for the case m < mg(p,q) were
given by

Michalowski-Rule-Staubach (2014): Op(BSO Y c B(L2x L2 — L) for
m < —n/2 =mg(2,2),

and by

Bényi-Bernicot-Maldonado-Naibo-Torres (2013): Op(BSO ) C B(LPx
LY — L") for 1 <p,q,r < o0, 1/p+1/g=1/r, and m < mg(p,q).

Problem: how about the critical case m = m,(p,q)?

Theorem H. (M.-Tomita 2013, Naibo 2015, M.-Tomita 2017,
2018) Let 0 < p <1, 0 < p,q,7r < 00, 1/p+1/q = 1/r, and
m = mp(p,q). Then

Op(BSS™ (R™)) C B(HP x HY — L"),

where HP x H9 — L" should be replaced by L°° x L°° —- BMO in
the case p=qg =r = .



3. Generalization of the bilinear exotic class

In this section, we shall mainly consider the boundedness of bilinear
Fourier multiplier operators on L2 x L2, which is the most fundamental
estimate.

3-1. The class BSy” (R™) with general W

Recall the following theorem, which is a part of Theorem H.
Theorem I. (M.-Tomita 2013) If o € BSé_n/2>(IR{"), i.e., if

0¢8P (&,m)| < Cog(1 + €] + n])~"/2,

then T, : L? x L? — L'. The exponent n/2 cannot be replaced
by a smaller number.



We shall show that the class BS(()_”/2>(IR%’”) can be replaced by a wider
general class.

Definition 3. Let W be a nonnegative bounded function on R"™ x R"™.
We define BSSV(R”) to be the set of all C*° functions ¢ = (£, 1) on
R™ x R™ such that

‘ag‘c’?ﬁa(é,n)\ < Co gW (&, n)

for all multi-indices o, 8. We call W the weight function.

Thus

BsSA(®™) = BSW (R with  W(&,n) = (1 + || + |n))~™/2.



Definition 4. B(Z™ x Z™) denotes the set of all nonnegative functions
V on Z"™ x Z™ for which there exists a constant ¢ € (0, 00) such that the
inequality
>, V(uv)A(p+v)B(p)C(v)
W,V ELY
< cl|Allp2(zn) I Bllp2(zn) ICl 22y

holds for all nonnegative functions A, B,C on Z".

Definition 5. For a nonnegative bounded function V on Z"™ x Z"™, we
define the function V on R" x R" by

[INASYAL

where Q = (—1/2,1/2]™.



Theorem J. (Kato-M.-Tomita 2019) Let V and V be as above.
(1) If there exists an r € (0,00) such that

Op(BS) (R™)) C B(L? x L? — L"), (2)
then V € B(Z"™ x 72™).
(2) Conversely, if V € B(Z™ x Z™), then

Op(BSy (R™)) C B(L2 x L? = L") for 1 <r < 2.

Thus, in particular,
V e B(Z" x7")
& Op(BSY (R™) ¢ B(L? x L? — LY)
< Op(BSY(R™)) C B(L2 x L? — L") for 1<r<2.



Theorem K. (Kato-M.-Tomita 2019)
(1) All nonnegative functions in the Lorentz class ¢+°°((Z")?)
belong to B(Z™ x Z™). In particular the function

V(s v) = (1+ |ul + |v)) /2
belongs to B(Z" x 7™).
(2) If V1, Va € £4°°(Z™) are nonnegative, then the function Vi (u)Va(v)
belongs to B(Z"™ x Z"™). In particular the function

V(n,v) = (L+|u)) 40+ |v))~/*

belongs to B(Z™ x 7™).
(3) If V ;, Vo ; € £4°°(Z) are nonnegative, j = 1,...,n, then the
n

function H V1, (1) V2 j(vj)belongs to B(Z"™ x Z™). In particular
J=1
the function

n

V(p,v) = [T @+ I~ 4@ + o)~/
j=1

belongs to B(Z"™ x Z™).



T he following corollary follows from Theorem J with the weight func-
tion V(p,v) = (1 4 |p))™/*(1 4 v)~"/*.

Corollary 1. Op(BS{” (R?)) ¢ B(W™/4 x Wn/4 — L' L?), where
wn/4 = wn/4(R") denotes the Sobolev space,

1 Fllyynragemy = 11+ 1ED™ A F ()] L2 (amy.



The next theorem can be proved by the use of Theorems J and K.

Theorem L. (Grafakos-He-Slavikova 2018, Kato-M.-Tomita 2019)
If |8§‘8§a(£,n)| < Cqu,p for all a,8 and if o € L1(R?™) for some

g < 4, then the operator T, is bounded from L? x L? to L1 n L2

It is known that we cannot take ¢ = 4 in the above theorem.

Theorem M. (Slavikova 2019) The assertion of Theorem L does
not hold for q = 4, i.e., there exists a ¢ € C°°(R" x R™) such
that 8?850(5,77) € L®(R?*™) for all o,8 and o € L*R?*") and
the corresponding bilinear Fourier multiplier operator 71, is not
bounded from L? x L? to L1.



3-2. The amalgam space

One of the ideas to prove Theorem J was to use the amalgam norm,
which is defined as follows.

Definition 6. For 0 < ¢ < oo and for measurable functions f on R",
the amalgam norm is defined by

1/q
||f||(L27€q) — ( Z |f(z 4 V)H%%(@))

vezr
with the usual modification in the case ¢ = oo, where Q@ = (—1/2,1/2]".
The class of all f with ||f||(L2 qy < oo is defined to be the amalgam

space (L2,¢9) = (L2, ¢9)(R").

Proposition 1.
(L%,¢9) > L7 if 2<q< oo,

(L%,09) Cc L9 if 0<gqg<2.



Theorem N. (Kato-M.-Tomita 2019)
(1) If there exist 0 < p,q,r < oo such that
Op(BSy (R™)) C B((L?,£P) x (L?,£9) — (L%, £")),

then V € B(Z"™ x 72™).
(2) Conversely, if V € B(Z™ x Z™), then (N-1) holds for all
0 < p,q,r < oo satisfying 1/p+1/q > 1/r.

Summarizing Theorems J and N, we have
V € B(Z" x 7™)
& Op(BSY (R")) C B(L? x L? — L)

& Op(BSY(R™) C B(L2x L2 - L") for 1<r<2,

& Op(BSY (R™)) C B((L2,#P) x (L2,€9) — (L2, ¢))
for 0<p,q,r<oo, 1/p+1/q>1/r.

(N-1)



3-3. Proof of Theorem J (1)

Let V be a nonnegative bounded function on Z"xZ" and 0 < r < oco. We
assume Op(BSY) C B(L? x L? — L™). We shall prove V € B(Z" x Z"),
i.e.,

> V(pwv)A(p+v)B(p)C(v)

p,vEL”
< cl|Allp2(zny I Bllp2(zny) ICl 22y
for all nonnegative functions A, B, C € ¢2(Z").

Notice that, by the closed graph theorem, our assumption implies that
there exist a positive integer M and a positive constant ¢ such that

T - <c max ||[V(g,n)"1o2ala(¢,
ol _Clal,lﬁlsMH (&m 1o (e, m)

for all bounded smooth functions o on (R™)2.



Take ¢, € S(R™) such that
SUDDQB C [_1/2’1/2]71, 95: 1 on [_1/4,1/4]?7,7
supp C [-1/4,1/4]", |F lg|>1 on [-1/2,1/2]".

Let {¢,.} be a sequence such that ¢, = +1. Consider the multiplier

m(&,n) = Y, €V, )€ — w)p(n — v).
[INASYAL

Then

0gopm(&,m)| < Co 5V (&)
with C,, g independent of the sequence {¢;}.

We define f,g € S(R™) by
&) = > B(we(€— ),

WEL™

gn) = > CWw)eln—v).

veyzn
Then |[f]l;2 = ||Bll,2 and ||g||;2 = [|C]| 2.



From the situation of the supports of ¢ and ¢, we have

Tm(f,)(@) = Y eV, v) B(u)C(v)e2miwt) e g=1,(4)2

p,vEL”
— Zdek@Qﬂ-ik.xf_lw(iU)Q
k
with
=Y V(u)B)Cw).

u+rv==k

Our assumption implies

1T Cf, e S Sl p2llgll 2 = [1Blle2llCll g2

We have
-

T ) T > d 2mik-x dr.

| T (fs DIz = (1/2.1/2]n zkjek L€ x
Hence

k " r
Drik-
/[—1/2,1/2]" Ekzekdke o) da 5 (1BlelClle)

(3)



Notice that the implicit constant in (3) does not depend on {e¢}.

We take the average over all choices of ¢, = £1. Then Khintchine’'s
inequality yields

r/2
(Z |dk|2> =
k
S (IBllgliCle)

which is equivalent to the desired inequality.

> V(uv)B(r)C(v)

pu+v==k

r
2
gk




3-4. Proof of Theorem J (2)

We assume V € B(Z™ x Z™) and define V on R" x R™ by

[INASYAL

where Q = (—1/2,1/2]". We assume o € BS(‘)N/(R”) and prove Ty, :
L2 x L? — (L2, ¢1).

It can be shown that there exists a function W on R™ x R™ such that

WEQ+ )™M SwEe+n) SwE@+ nh™
for some M € (0,00) and

W gnyzn € B(Z" x Z"), V(&) < W ().

We shall use this function W instead of V.
Our assumption implies that o € BSY (R™).



We take the usual Littlewood-Paley functions {¢y},enugoy, Which are
defined as follows. Take a function ¢ such that

(€ CP(R™), suppy C{€eR™ 271 < [¢] < 2},
S (g/27) =1 for all € € R™\ {0},

| j€Z

N\

and define
ve(€) = 9(g/2%), k=1,2,...,
Yo(€) =1— > ¥ (8).

k=1



We decompose o as

(&M= Y ¥ (De)vu,(Dn)on)

k1,koeNU{0}

= Y. ok k(&M

k1,koeNU{0}
where
Oy o (6:1) = gy (D) ¥y (D) (€, m)

= Jen 2™ AN 22y (21 )by, (22)5 (21, 20) dz1d2o.

Then
A
SUpP (04, k,) " C {(21,22) € (RM? | |z1] < 2F1FL |25] < Db
and, by virtue of the moderate behavior of W,

HW(& n)_10k17k2 (z,&,1n) HLOO((Rn)Q) < 2—(k1—|—k2)N,

where N > 0 can be taken arbitrarily large.



The following proposition is the essential part of the proof.

Proposition 2. Suppose 7 is a bounded continuous function on
(R™)? such that

supp 7 C {(21,22) € (R™)? | |z1] < 281, |25| < 2F2}
with ki, k2 € NU {0}. Then

ITrll 2 2oy 22,01 S 2FHE2 W (&) 1 (6 ) | poo (2

Applying this proposition to m = Okq ko and taking sum over
k1,k> € NU {0}, we conclude that ||TU||L2><L2—>(L2,£1) < 00.

In the proof of Proposition 2, we used some ideas of Boulkhemair
1995, who considered sharp L2 estimates for linear pseudo-differential
operators.



3-5. Proof of ¢4 (721 c B(Z™ x Z™)

By appropriately extending functions on Z™ and Z"™ x Z™ to functions
on R™ and R"™ x R", it is sufficient to prove the continuous version

§5H‘/HL4xw(Rn>an)Hf1HL2(Rn)HIBHLQ(Rn)chnLQ(Rn)
for nonnegative functions V, A, B, C € L2(R"™).

(4)

It is known that the inequality

S IV oo e xro) 1Al Lar (rey | Bl La2 (re) | C Il Las (rny
holds if and only if

2 1 1 1
St =2
q0 q1 q2 q3

1 1 |
0<-<1—--<1, i=1,23.

q; q0



By the real interpolation for multilinear operators (S. Janson), it follows
that the inequality

S IV paoro r2my 1A Larr1 (re) [ Bl La2:r2 () |C || 373 (R

(5)

holds if

2 1 1 1
S+ 4 =2
q0 q1 q2 q3

1 1 |
0< -—<1——"<1, i=1,23,
q q0

1 1 1 1
—+—+—+—=1
o T T2 T3
In particular, by taking g9 = 4, q1 = q» = q3 = 2, g = r; = o0, and

ro = r3 = 2, we obtain

S MV paco mrscrmy 1Al L2.00 (rry 1Bl 2oy 1C] 1.2 (R

which a fortiori implies the desired inequality (4).
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